Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций
В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах
1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем
Б. Структура группы разработчиков:
Возможно совмещение функций.
В. Критерии оценки проекта: актуальность темы (системы), полнота, адекватность, информативность, качество и другие системные критерии.
С. Ориентировочный перечень проблем (темы могут быть выбраны и по желанию преподавателя и/или студента):
1. Прогноз поливов и величины урожая - важная социально-экономическая и сельскохозяйственная задача. Наиболее известные способы определения влажности почвы - метеорологический и термостатно-весовой. Первый может не дать желаемой точности, а второй связан с большими материальными и временными затратами. Поэтому важно разработать имитационную процедуру, дающую достаточную точность и учитывающую физиологические характеристики сельхозкультур. Уравнение водного баланса расчетного корнеобитаемого слоя растений можно записать: W'(t)=q(t)P(t)+P1(t)-E(t)-(t), где P(t) - величина осадков; q(t) - коэффициент использования осадков (определяется, например, экспертно или по формуле Харченко С.И., через Wmin - наименьшую влагоемкость почвы и Wz - влажность завядания); P1(t) - подпитывание (приток) из грунтовых вод; E(t) - суммарное испарение из корнеобитаемого слоя; H(t) - уровень (сток) грунтовых вод, W(t) - средняя по слою влажность почвы (с учетом поливов или на межполивной период). Оценить и учесть влияние накопившейся к некоторому моменту времени биомассы растений на экологически обоснованную величину суммарного испарения в каждый момент времени. Величину суммарного испарения из корнеобитаемой зоны растений представить в виде суммы интенсивности транспирации растениями E1(t) и интенсивности испарения с поверхности почвы E0(t): E(t)=E0(t)+E1(t). Прирост биомассы описывается, например, уравнением x'(t)=a(t)E1(t)-b(t)x(t), где x(t) - биомасса культуры; a(t) - эффективность транспирации; b(t) - коэффициент расхода на дыхание. Для определения динамики накопления биомассы может использоваться банк различных моделей, из которых подбирается по тем или иным критериям адекватности наилучшая модель (по результатам идентификации). В рассматриваемой нами процедуре моделирования будем использовать простую для идентификации модель Ферхюльста-Пирла: x'(t)=[ε(t)-λ(t)x(t)]x(t), где ε - коэффициент роста (автоприроста), λ - коэффициент сопротивления среды (нехватки воды). Динамика прироста биомассы хорошо описывается уравнением Давидсона-Филиппа: х'(t)=e0(t)(F(t)-R(t)), где e0 - коэффициент перехода от массы усвоенной СО2 к сухой фитомассе; F - суммарный фотосинтез растений; R - суммарное дыхание растений. Интенсивность дыхания за сутки зависит от величины накопившейся биомассы. Экспериментально получено, что R(t)=b(t)x(t)+e1F(t), где e1 - коэффициент затрат на рост биомассы растений. Коэффициенты е0, е1 - экспериментально определяемые, для ряда культур ε0=0,68, ε1=0,27. Принимая во внимание приведенные уравнения и соотношения, имеем следующую модель расчета влажности почвы, с учетом динамики накапливаемой биомассы: W'(t)=q(t)P(t)+P1(t)-E(t)-H(t)
где i - номер фазы вегетации растения (i=1,2, ..., n); n - число фаз вегетации; xi0 - экспериментальные величины урожайности культуры за репрезентативный период времени; xi - теоретические величины урожайности сельхозкультур, определяемые по приведенной выше формуле. Фотосинтез F возможно учесть, например, с помощью формулы: F(t)=Fmaxe-μ[s(t)-z][λ(t)x(t)/
где x(W) - прогнозная урожайность; xmax - максимальная урожайность сельхозкультур; W - влагообеспеченность корнеобитаемого слоя почвы, определяется как описано выше; Wmin, Wmax - соответственно, нижняя и верхняя границы влагообеспеченности почвы, при которой урожай равен нулю; Wopt - влагообеспеченность, соответствующая xmax; β - параметр, характеризующий темпы роста урожая с увеличением влагообеспеченности.
2. Рассмотрим социо-эколого-экономическую проблему оценки степени загрязнения среды и воздействия загрязнителей на человека (животное, растение), а именно, интегральной оценки степени загрязненности среды для некоторых основных загрязнителей и оценки их влияния на человека и животное. При выборе загрязнителей учитываются: степень воздействия на экосистему; степень вредности (класс опасности) для человека; распространенность в биосфере; пороговый уровень содержания загрязнителя в атмосфере, при котором загрязнитель начинает свое воздействие; действие смеси загрязнителей, эффект суммирования воздействий. Например, для описанной ниже модельной ситуации были выбраны следующие загрязнители: сероводород, аммиак, двуокись углерода, двуокись азота, серная кислота, ацетон, двуокись серы, стирол, фтористый водород, окись углерода, этилацетат. Их выбор определялся как важностью для рассматриваемого объекта (гидрометаллургический объект), так и применением найденных открытых источников данных. С использованием многофакторного нелинейного анализа был получен ряд регрессионных зависимостей, а затем на их основе вычислены нормированные интегральные оценки загрязнения (приведенные к единице). Имитационная процедура строилась следующим образом. Пусть интегральная оценка загрязнения среды обозначается через y. Будем, для простоты, различать только 3 случая:
Под у понимается некоторая интегральная характеристика, оценка суммарного воздействия загрязнителей, например, она может быть ассоциирована с вероятностью загрязнения; оценки y(1), y(2) и y(3) могут быть выражениями оптимистической, реалистической и пессимистической оценок загрязнения среды. Используя регрессионный и корреляционный анализ, получаем экспериментальные зависимости уi=f(xi), где xi - фактор (загрязнителя) номер i, уi - оценка загрязнения по xi. Получены следующие результаты:
Номер фактора | Зависимость для человека | Зависимость для животного |
1 | y=1,00000x | y=0,35714x |
2 | y=0,0000029+1,17647x | y=0,09524x |
3 | y=x/(0,0016+0,00007x) | y=x/(0,0014+0,00011x) |
4 | y=2,10521x | y=1,11111x |
5 | y=x/(0,0055+0,000068x) | у=x/(0,00666+1,00001x) |
6 | Y=0,000013+0,351x | y=0,02857x |
7 | y=x/(0,21+0,000115x) | y=0,02873x |
8 | y=0,2941x | y=0,08x |
9 | Y=0,0000991+2,41x | y=2,50x |
10 | y=-0,00004+0,26317x | y=0,125x |
11 | y=0,03634х | y=-0,00004+0,02778x |
Остаточная дисперсия этих зависимостей не более 0,0001. Затем, используя эти зависимости в качестве базисных функций, в результате нелинейного регрессионного анализа по базисной системе {fi} строятся зависимости вида y(j)=F(y1, y2,..., yn), j=1, 2, 3. При этом учитывается эффект суммирования влияния отдельных загрязнителей. Далее определяются оценки среднего ожидаемого загрязнения и его дисперсии для данной экологической системы. Приведенная процедура имитационного моделирования, при всей ее простоте, - технологична и позволяет оценивать загрязнение экосистемы, что актуально не только при экологическом, но и при социально-экономическом краткосрочном прогнозировании. Для слабо-, средне- и сильнозагрязненных участков (вдали, на среднем удалении, и вблизи от загрязнителя, например, от трубы гидрометаллургического завода) были получены зависимости для оценки интегрального влияния концентрации этих загрязнителей на человека:
y(1)=exp(-1,79+2,89x1+1732,87x
+34,657x8+42,001x9+3,466x10+0,
y(2)=exp(-0,81+0,58x1+67,58x2+
+0,20x8+8,11x9+0,37x10+0,02x11
y(3)=exp(-0,02+0,01x1+0,12x2+
+0,003x8+0,02x9+0,003x10+0,37x
Для тестового примера (случай слабого загрязнения): х1=х2=х3=0, х4=х5=х6=х7=0,0001, х8=х9=0,001, х10=х11=0,01 (мг/л) получаем оценку загрязненности этого имитационного полигона среды y(1)=0,23. При этом, используя аналогичные оценки для случаев средне- и сильнозагрязненных участков, получим y(2)=0,56 и y(3)=0,98, что согласуется с вышеприведенными гипотетическими оценками, для которых строилась модель. Математическое ожидание загрязнения среды и дисперсия: М=0,57, σ=0,02. Отметим, что если все хi=0 (i=1, 2, :, 11), то, например, y(1)=0,09. Это может быть отражением как меры адекватности модели, так и, скорее всего, присутствием в среде фонового загрязнения даже при нулевом загрязнении, что подтверждают известные экологи (Р.Г. Хлебопрос). Из приведенного модельного примера видно, что модель может быть полезна для планирования экологических и эколого-экономических мероприятий, например, последствий (штрафов) за экологические нарушения. Обобщить, усложнить ситуацию и провести аналогичное исследование.
3. При исследовании ряда экологических и социально-экономических систем часто достаточно бывает качественно оценить воздействия, особенно наиболее существенные, и определить причинно-следственные связи между воздействиями (человека, например) и вектором х состояния системы, x=(x1, x2, ..., xn), где хi - фактор экологического состояния, i=1, 2,..., n. Такого рода модели не позволяют нам оценить всю сложную и динамическую цепь взаимовлияний экологических параметров среды, но являются когнитивным инструментарием на начальных стадиях исследования системы, например, на этапе формализации и структурирования системы. Рассмотрим следующую процедуру проведения экспертизы и основанного на ней моделирования. Сформируем профессиональную (эффективную качественно и количественно) группу экспертов. Требования к качественному составу: общая эрудиция; профессионализм в данной области; психологическая совместимость; научный интерес и отсутствие материального интереса к проблеме; опыт, умения и навыки; самокритичность и критичность. Обычно это осуществляется анкетным опросом, тестированием. Количественная оценка компетентности потенциального i-го эксперта:
где cij - вес градации, перечеркнутой i-ым экспертом по j-ой характеристике в анкете, cjmax - максимальный вес (предел шкалы) j-ой характеристики в баллах, m - общее количество характеристик в анкете, di - вес ячейки, перечеркнутой экспертом в шкале самооценки в баллах, ui - предел шкалы самооценки эксперта в баллах. Оптимальная численность экспертной группы оценивается сложнее. Необходимо обеспечить высокий уровень компетентности экспертной группы и стабилизацию средней оценки прогнозируемой системы. Максимальная ее численность может быть оценена как
где Kmax - максимально возможная компетентность в выбранной системе шкал, n - количество испытуемых. Минимальная численность может быть оценена как Nmin=0,5(3/h+5), где h - допустимая величина изменения средней оценки в группе, при условии, что экспертная группа считается сформированной, если за нее голосовали не менее 2/3 испытуемых. Численность экспертной группы должна быть от Nmin до Nmax . После того, как экспертная группа сформирована, приступаем, собственно говоря, к процедуре моделирования. Выбирается, например, эмпирическим путем вектор состояния системы xΩ, Ω - рассматриваемая область (среда), а также некоторые граничные векторы состояния среды a=(a1, a2, ..., an), b=(b1, b2, ..., bn), ai=min{xi}, bi=max{xi}, где минимум и максимум берется по всей области Ω. Составляется матрица V из элементов vij, где vij - степень влияния xi на xj, i=1,2,...,n. При этом можно использовать, например, подмодели корреляционного анализа. Далее выбираем начальное состояние х0 и проводим имитационные расчеты по заданной временной сетке. Управление моделью (траекторией поведения системы) можно осуществлять изменениями параметров xi, ai, bi, vij или выбором новой модели взаимодействия из некоторого банка моделей. Простыми моделями этого банка могут быть квадратичная, кубическая, дробно-рациональная, экспоненциальная, логарифмическая и другие зависимости. Используется также динамическое переупорядочивание связей в системе, модели (например, переход от одной модели к другой, более оптимальной по остаточной дисперсии). Наконец, оцениваем эффективность j-й траектории (имитационного варианта номер s, приводящего к решению номер r, 1rR):
где N - число траекторий, cs - экспертная оценка значимости цели номер s, gsr(x) - функционал эффективности траектории s, приводящей к цели r. Определяем вероятность pzk предпочтения траектории номер z другой траектории с номером k и функцию правдоподобия этого предпочтения W:
где pz и pk - вероятности предпочтений для траекторий номер z, k, соответственно, dzk - экспертная (сравнительная) оценка траекторий z и k (ее можно взять, в частности, равной сумме оценок или баллов, при которых траектория z предпочиталась траектории k). Заметим, что более сложная и формализованная модель получается, если повторять имитационные расчеты с различными вероятностями pz и pk, уточняемыми каждый раз, например, следующим образом (qz - экспертная оценка траектории z, например, сумма баллов, в которой отмечалась траектория номер z):
Данная процедура и ее модификации могут быть использованы при реализации экспертных систем в различных областях. Реализуйте данную процедуру в одной информационной системе (например, в экспертной системе).
4. В качестве конкретного примера реализации имитационных вычислительных экспериментов рассмотрим модель качественного прогнозирования системы (процесса). При решении многих Е2Е-проблем, когда из-за длительности экологических процессов экспериментальное изучение становится практически невозможным, построение математических и компьютерных моделей часто является единственным способом принятия ключевых решений. Для разрешения многих эколого-экономических задач достаточно качественно промоделировать динамику развития системы. В рассматриваемой системе (модели) ключевую роль играют факторы состояния системы. Так как при построении модели учесть все факторы влияния практически невозможно, то модель данного типа не позволяет проследить всю сложную цепь взаимовлияния экологических параметров среды, но с ее помощью становится возможным оценить наиболее существенные эколого-экономические воздействия, а также определить причинно-следственные связи в данной экосистеме. Для каждого определяющего фактора задается его текущее, максимальные и минимальные значения границ его изменения или задается вектор состояния экосистемы x=(x1, x2,...:, xn) и два вектора границ его изменения: xmax=(x1max, x2max,..., xnmax), xmin=(x1min, x2min,..., xnmin), где n - число факторов. При этом для каждого фактора: ximin<xi<ximax. Для каждого фактора задается коэффициент влияния его на каждый из остальных, в том числе и на самого себя, т.е. строится матрица воздействий A:
Информация о работе Введение в анализ, синтез и моделирование систем