Введение в анализ, синтез и моделирование систем

Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций

Описание работы

В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах

Содержание

1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем

Работа содержит 1 файл

АСИС.doc

— 1.75 Мб (Скачать)

Cитуационный анализ соотношения осложняется рядом факторов:

  1. структура активов и пассивов могут отражаться ссудами различной длительности, а также различными схемами размещения и привлечения обязательств и ценных бумаг, например, возврат денег может быть осуществлен по схеме ежемесячного отчисления процентов и уплаты кредита в конце либо по схеме единовременного возврата суммы долга и процентов в конце промежутка кредитования;
  2. необходимостью учета (прогноза) инфляционного ожидания и "увеличения" или "очистки" тех или иных составляющих активов и пассивов в зависимости от инфляции;
  3. различными параметрами и факторами, влияющими на степень риска, затрудненностью оценки величины риска.

Различные структуры и схемы размещения и привлечения финансовых ресурсов определяют и различные динамические модели.

Например, если схема предусматривает возврат долга с процентами одновременно, реальная ставка рублевого кредита d может быть определена по формуле

d=(z-a)/(1+a/100) (%),

где z - номинальная ставка рублевого кредита (%), а - инфляция за период кредитования (%).

Для валютного кредита, очищенного от инфляции, с учетом внутренней конвертируемости рубля:

d=[((1+z/100)(1+g/100)-(1+a/100))/(1+a/100)]100 (%),

где z - номинальная ставка валютного кредита (%), g - рост курса валюты за период кредитования (%).

Если же договор размещения кредитов предусматривает учет динамики возврата долга (части долга) и уплаты процентов, то реальная ставка может определяться следующей процедурой:

  1. определяется динамика срочных выплат (части долга и процентов), гарантирующая полное выполнение обязательств за период кредитования, т.е. обеспечивающая выполнение условий

где gt - ежемесячные (ежеквартальные, ежегодные) выплаты, t - номер месяца (квартала, года), в конце которого происходит выплата, S - размер ссуды, выданной в начале договора кредитования, T - количество дней (месяцев, кварталов, лет) кредитования;

  1. задается динамика инфляции, например, дискретная функция at=a(t), t=1,2,...,T;
  2. определяется реальная ставка d - решение уравнения:

если кредит - валютный, то необходимо дополнить этапы 1-3 этой процедуры следующими этапами:

  1. осуществляется прогноз роста курса валюты, т.е. определяется (задается) дискретная функция gt=g(t), t=1, 2, :, T;
  2. реальная ставка определяется из уравнения вида (S - ссуда в валюте):

В долговременных финансово-кредитных операциях проценты либо выплачиваются сразу после их начисления, либо их реинвестируют, применяя сложные проценты. Исходная сумма S (база) увеличивается по принятому (кредитором и дебитором) соглашению, а для простых процентов база постоянная и равна начальной сумме S. Присоединение начисленных процентов к базовой сумме называется капитализацией процентов, t=0,:, T.

Важнейшим показателем при ситуационном анализе и моделировании деятельности и жизнеспособности банка является надежность, банковский или кредитный риск. Надежность банка - не просто вероятность быть надежным банком в данный момент, а вероятность банка сохранять надежностные характеристики и отношения на некотором допустимом промежутке их варьирования и для определенного промежутка времени.

Пусть x=(x1, x2, ..., xn)Ω - вектор, характеризующий надежность банка, а Ω - некоторое множество его допустимых изменений. В качестве меры надежности можно взять условную вероятность p=p(P/Ω), где P - оценка (степень) надежности, P/Ω - оценка при условии изменения xΩ.

Пример. Пусть Ω=Ω(x1,x2,x3) - информационные ресурсы, доступные объекту (субъекту), который производит анализ надежности банка, а x=(x1,x2,x3), где x1 - активы банка, x2 - пассивы банка, x3 - дебиторская задолженность банку. Пусть, например, мы хотим оценить надежность банка, но не имеем о банке информации (или имеем нулевую информацию). Тогда значение p(P/Ω) можно получить, только исходя из двух возможных равновероятных состояний - банк либо надежен, либо не надежен, т.е. p(P/Ω)=0,5. Результат мало информативен и может быть применен к любому банку при любых условиях Ω. Пусть теперь известно, что существует лишь 30 % надежных банков, т.е. мы при оценке надежности банка используем эту информацию. В этом случае можно оценить надежность банка как 0p(P/Ω)0,3. В то же время, как и для предыдущего случая, такая оценка надежности будет малоинформативной, так как здесь мы имеем, как и в первом случае, два возможных состояния (p0,3 и p>0,3) и по формуле Шеннона количество информации в том и в другом случае равно

I=log2N=log22=1 (бит).

Чем более точной информацией о банке владеет вкладчик (дебитор), тем проще ему можно принимать верные решения, т.е. тем чаще и ближе будут оценки вероятности (надежности) p к p=0 и p=1. Чем меньше информации, тем сложнее принять однозначное решение, тем чаще и ближе будет оценка вероятности к p=0,5 ("пятьдесят на пятьдесят").

Величину p(P/Ω) принято называть апостериорной вероятностью (a posteriori - после опыта). Под опытом здесь подразумевается процесс получения информации Ω, следовательно, p(P/Ω) - вероятность быть надежным банком с учетом полученной в результате опыта информации.

При определении надежности (например, экспертами) могут допускаться ошибки, в том числе и субъективного характера. Это - вероятность "ложной классификации". Пусть p1 - вероятность отнесения (априори) надежного банка в класс ненадежных, а p2 - вероятность отнесения (априори) ненадежного банка в класс надежных банков. Если не учитывать гипотез о степени их предпочтения (рейтинг банка), то показатель качества классификации - сумма вероятностей совершения ошибок, т.е. p=p1+p2. Можно снабдить их весами (предпочтения) a1 и a2, например, если a1=1, a2=2, то вероятность p2 в 2 раза важнее p1 (иначе говоря, в 2 раза опаснее относить ненадежный банк в группу надежных, чем надежный банк в группу ненадежных). Тогда итоговый показатель является средневзвешенной суммой вероятностей:

p=a1q1+a2q2,

где a1, a20, q1, q20, q1, q2- вероятности ошибок, q1=1-p1, q2=1-p2.

Показатель p называют байесовским риском. Чем больше p, тем хуже произведена классификация, а чем она ближе к нулю, тем классификация ближе к реальной или априорной классификации.

Для ситуационного анализа необходимо иметь адекватные модели потока платежей. Как правило, этот поток - дискретный. Рассмотрим одну из простых подмоделей модели ситуационного анализа, дополняющую выше приведенную процедуру.

Пусть в момент времени t0=0 имеется капитал x(0) (денежных единиц), а в момент времени t=t1, t2, ...,tn имеются транзакции (приход, расход) y(ti), i=1,2,...,n. Рассмотрим, как это бывает на практике, одинаковые промежутки времени (год, месяц, день) [t0;t1], (t2;t3], ..., (tn-1; tn], т.е. ti-ti-1=const и векторы t=(0, t1, t2,...,tn), x=(x(0), x(t1), x(t2), ..., x(tn)), y=(0, y(t1), y(t2), ..., y(tn)), v=(0, v(t1), v(t2), ..., v(tn)), где v(ti) - коэффициент дисконта на промежутке времени (0;ti], т.е. коэффициент относительной скидки или отношения приращения ссуды (капитала) за срок от 0 до ti к наращенной сумме. Тогда потоки приходов и расходов будут, соответственно, равны

Будем считать доходы кредитора (инвестора) отрицательными величинами (отдает), а поступления - положительными. Тогда z(0)=-x(0) - начальный доход (начальная величина инвестиций), а z(ti)=y(ti)-x(ti) - поступление на его счет, i=1,2,..., n.

Чистая стоимость потока Q=R-P равна:

Аналогично, чистое наращенное значение потока на момент времени ti>0 равно (вводя a(tj, ti) - коэффициент наращения на (tj;ti],j=1,:,n-1)

Наращенное значение всех платежей к моменту времени tn=T равно Qn.

Одним из эффективных механизмов принятия деловых решений (в проблемах инвестирования, выработки стратегии поведения, развития и т.д.) является использование ИСПР (просто СПР) - информационных систем поддержки решений (Decision Support Systems), сочетающих современные средства аналитической обработки и средства визуализации информации и технологии поддержки деятельности экспертной группы.

Пример. В области организационного управления наибольший интерес имеют так называемые ситуационные (эмерджентные) комнаты (центры), позволяющие быстро "погрузить" ЛПР в рассматриваемую проблемную ситуацию, обстановку, помочь разобраться в проблеме и принять локально-оптимальное (не обязательно глобально-оптимальное) решение. Например, президент США имеет несколько таких комнат. Существуют ситуационные центры Президента РФ, Совета Безопасности, МЧС. Ситуационные комнаты - это специальное место для поддержки построения, проигрывания проблемной ситуации и принятия решений одним человеком или группой людей. Эффект от использования ситуационной комнаты зависит от корректности поставленной проблемы, полноты и достоверности используемых данных, сценария обсуждения, технологий интеллектуальной и компьютерной поддержки (например, использования экспертных систем), временного интервала прогноза и др. Простое использование автоматизированной системы обработки документов, поисковых систем, средств визуализации и мультимедиа - недостаточные условия для функционирования ситуационной комнаты. Основная функция СПР - поддержка умственной, эвристической и творческой деятельности ЛПР. СПР может работать в следующих режимах:

  1. проблемный мониторинг и актуализация информации (СМИ, органов власти, объектов управления и пр.) с целью текущего информирования и предупреждения о накапливающихся небольших негативных явлениях;
  2. планово-аналитический режим - плановое заслушивание и обсуждение аналитических докладов по проблемной ситуации с целью поддержки и принятия заслушиваемого решения по заранее фиксированному сценарию подачи, демонстрации материала для анализа "вширь" и "вглубь";
  3. чрезвычайный режим - оперативный мониторинг информации, принятие и контроль исполнения решений по непредвиденным, чрезвычайным проблемам с целью уменьшения негативных факторов, влияющих на обычное в таких ситуациях совмещение построения сценария, обсуждения и принятия решений.

В базовом варианте, ситуационная комната может включать экран коллективного доступа; компьютер (обычно, ноутбук) с возможностью отображения на экран коллективного доступа; средства доступа к базе данных (знаний), в том числе - с целью сохранения сценария обсуждения, систему подготовки презентаций.

Вопросы для самоконтроля

  1. Что такое принятие решения? Что такое полезность решения?
  2. Что такое ЛПР, СПР, ИСПР?
  3. Как могут классифицироваться задачи принятия решений? Как влияет неопределенность и многокритериальность на такую классификацию и на решение задачи принятия решений?

Задачи и упражнения

  1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ЭВМ, чтобы минимизировать потери из-за неисправности. В случае, если ремонт будет производиться слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок. Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. ЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Построить процедуру принятия решения о ремонте (исходя из различных ситуаций, в которые помещено ЛПР).
  2. Интенсивность спроса x (спрос в единицу времени) на некоторый товар задается непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться большими. Потери возможны и в том, и в другом случае. Предложите процедуру принятия решения о необходимом запасе товаров.
  3. При работе на ЭВМ необходимо периодически проверять наличие вирусов. Приостановка в обработке информации приводит к определенным экономическим издержкам. Если же вирус вовремя не будет обнаружен, возможна и потеря информации, и затраты на восстановление. Варианты решения таковы: Е1 - полная проверка; Е2 - минимальная проверка (проверка каталога); Е3 - отказ от проверки. ЭВМ может находиться в состояниях: F1 - вирус отсутствует; F2 - вирус есть, но он не успел активизироваться; F3 - некоторые файлы испорчены вирусом и нуждаются в восстановлении. Предложите процедуру принятия решения. Организуйте группу и руководство по ситуационному моделированию для решения этой проблемы (для принятия решений по проблеме).

Темы научных исследований и рефератов, интернет-листов

  1. Функции, задачи, поведение ЛПР.
  2. Системы поддержки и принятия решений.
  3. Оптимизация и принятие решений.


14. Лекция: Модели знаний

Рассматриваются основные модели знаний, их структура, атрибуты, примеры.

Цель лекции: введение в основные модели представления и формализации знаний, их атрибуты и структуры.

Такие понятия как "интеллект", "интеллектуальность", у специалистов различного профиля (системного анализа, информатики, нейропсихологии, психологии, философии и др.) могут несколько различаться, причем это не несет в себе никакой опасности.

Примем, не обсуждая ее положительные и отрицательные стороны, следующую "формулу интеллекта":

"Интеллект = цель + факты + способы  их  применения",

или, в несколько более "математическом", формализованным виде:

"Интеллект = цель + аксиомы + правила  вывода  из  аксиом".

При поиске наиболее удобных, рациональных средств и форм информационного обмена человек чаще всего сталкивается с проблемой компактного, однозначного и достаточно полного представления знаний.

Знания - система понятий и отношений для такого обмена. Можно условно классифицировать знания в предметной области на понятийные, конструктивные, процедурные, фактографические знания и метазнания.

Понятийные знания - набор понятий, используемых при решении данной задачи, например, в фундаментальных науках и теоретических областях наук, т.е. это понятийный аппарат науки.

Конструктивные знания - наборы структур, подсистем системы и взаимодействий между их элементами, например, в технике.

Процедурные знания - методы, процедуры (алгоритмы) их реализации и идентификации, например, в прикладных науках.

Фактографические - количественные и качественные характеристики объектов и явлений, например, в экспериментальных науках.

Метазнания - знания о порядке и правилах применения знаний (знания о знаниях).

Представление знаний есть процесс, конечная цель которого - представление информации (семантического смысла, значения) в виде информативных сообщений (синтаксических форм): фраз устной речи, предложений письменной речи, страниц книги, понятий справочника, объектов географической карты, мазков и персонажей картины и т.п.

Для этого необходимо пользоваться некоторой конструктивной системой правил для их представления и восприятия (прагматического смысла). Назовем такую систему правил формализмом представления знаний. Неформализуемые знания - это знания, получаемые с применением неизвестных (неформализуемых) правил, например, эвристик, интуиции, здравого смысла и принятия решений на их основе.

Информация о работе Введение в анализ, синтез и моделирование систем