Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций
В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах
1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем
End;
SetColor(Red); SetLineStyle(3,1,1);
Line(70,ay[time],ax[time],ay[
Ipol(0,x[0],1,x[1],2,x[2]);
For i:=ax[0] to ax[2] do Begin
End;
For t:=1 to Time-2 do Begin
Ipol(t,x[t],t+1,x[t+1],t+2,x[
For i:=ax[t+1] to ax[t+2]do
ReadKey; CloseGraph;
End;
{-----------------------------
Begin
While true do
Begin
ClrScr; TextBackGround(2); Window(1,1,80,25); ClrScr;
OpenWindow(30,22,50,24,' Нажмите клавишу: ',4,1);
OpenWindow(5,5,75,16,' Динамика фондов производства ',14,5);
ClrScr; WriteLn;
WriteLn(' Пусть х(t) - основные фонды в момент времени t, y(t) -');
WriteLn(' инвестиции, m - коэффициент амортизации фондов.');
WriteLn(' Модель динамики основных фондов (L - лаг):');
Write(' x`(t) = y(t-L) - mx(t), где х(0) = Хо, y(t)=at+b, ( a,b>0 ).');
ReadKey; CloseWindow;
OpenWindow(15,10,65,17,' Выбирите вариант входа-выхода: ',15,0);
ClrScr; WriteLn;
WriteLn(' С клавиатуры - <1>');
WriteLn(' Из файла - <2>');
WriteLn(' Случайными числами - <3>');
WriteLn(' Выход
ch:=ReadKey;
Сase ch of
#49: InputKeyboard;
#50: Вegin InputFile; OutputScreen; Еnd;
#51: Вegin InputRnd; OutputScreen; End;
#27: Halt(1);
End;
CloseWindow; Worker; OutputFile;
OpenWindow(22,10,58,14,'',15,
ClrScr; WriteLn;
Write('Для просмотра графика нажмите ввод'); ch:=ReadKey;
If ch=#13 then begin Graf; RestoreCrtMode; end;
CloseWindow; TextBackGround(15); Window(1,1,80,25);
ClrScr; OpenWindow(15,10,65,16,'',15,
WriteLn(' Хотите еще моделировать ?'); WriteLn;
WriteLn('Для выхода нажмите - < Esc >');
WriteLn('Для продолжения нажмите любую другую клавишу');
ch:=ReadKey;
If ch=#27 then Halt(1);
CloseWindow;
End;
ClrScr; TextBackGround(0);
End.
Эксперимент 1. Поток инвестиций - постоянный и в каждый момент времени равен 10000. В начальный момент капитал - 1000000 руб. Коэффициент амортизации - 0,0025. Найти величину основных фондов через 20 суток, если лаг равен 5 суток.
Эксперимент 2. Основные фонды в момент времени t=0 была равны 5000. Через какое время общая их сумма превысит 120000 руб., если поток инвестиций постоянный и равен 200, а m=0,02, T=3?
Эксперимент 3. Какую стратегию инвестиций лучше использовать, если величина инвестиций постоянная, в начальный момент капитал равен 100000, величина амортизации постоянная?
Модификация 1. Коэффициент амортизации можно взять в форме m=r-sx(t), где r - коэфициент обновления фондов, s - коэффициент устаревания фондов, причем 0r, s1. При этом модель примет вид
x´(t)=y(t-T)-rx(t)+sx2(t), x(0)=х0
Этой непрерывной, дифференциальной, динамической модели можно поставить в соответствие простую дискретную модель:
хi+1=хi +yj - rхi+sxi 2 ,
x0=с, i=0, 1, 2, :, n, 0<j<n,
где n - предельное значение момента времени при моделировании. Поставить цели и исследовать непрерывную и дискретную модели.
Модификация 2. Одна из моделей математической экономики задается уравнением: dz/dt=((1-c)*z(t)+k(t-w)+a)l, где z(t) - функция, которая характеризует выпуск продукции, k - коэффициент капиталовложений, a - независимые расходы производства, l - скорость реакции выпуска на капиталовложения, c - постоянная спроса, w - запаздывание (лаг). Поставить цели и исследовать непрерывную и дискретную модели.
Модификация 3. Для модели динамики фондов с переменным законом потока инвестиций: а) построить гипотезы, модель и алгоритм для моделирования; б) сформулировать планы вычислительных экспериментов по этой модели; в) реализовать алгоритм и планы экспериментов на ЭВМ.
Математическое моделирование только в последнее время становится на технологическую основу, в связи с этим необходимо отметить особую роль обычно технологичного имитационного моделирования, которое позволяет нам проигрывать реальные ситуации, происходящие в системах, на их моделях. Компьютерное моделирование (получение, накопление, переработка, хранение, использование, актуализация знаний с помощью ЭВМ), в отличие от математического, используется сравнительно недавно, хотя эти технологии моделирования тесно связаны. Компьютерное моделирование, как правило, применяется тогда, когда не удается построить математической аналитической модели или же такая модель трудоемка для исследования.
Пример. Компьютерной (физической) моделью может служить простая модель броуновского движения, получаемая генерацией компьютером нового случайного положения точки на экране и траектории ее движения; при этом отметим, что сам "датчик случайных чисел компьютера (или языка)" - это компьютерная модель, соответствующая математической модели распределения случайной величины (обычно нормального распределения) или так называемой функции распределения. Это распределение - псевдослучайное, получаемое по вполне детерминированному алгоритму.
По приведенным ниже моделям: выписать соответствующую дискретную модель (если приведена непрерывная модель) или непрерывную модель (если приведена дискретная модель); исследовать модель в соответствии с поставленной целью (получить решение, проверить его единственность, устойчивость, наличие стационарного решения); составить алгоритм моделирования; модифицировать модель или разработать на ее основе новую; сформулировать несколько реальных систем, описываемых моделью; линеаризовать и идентифицировать модель (предложить подходы); сформулировать несколько возможных сфер применения моделей и результатов, полученных при ее исследовании; определить тип, входное и выходное множество модели.
Рассматриваются основные понятия и принципы эволюционного моделирования систем, а также генетических алгоритмов - адекватного аппарата его проведения.
Цель лекции: ввести в суть проблемы, сформулировать основные положения и принципы, цели эволюционного моделирования и дать общее понятие о генетических алгоритмах и их возможностях в эволюционном моделировании.
Потребность в прогнозе и адекватной оценке последствий осуществляемых человеком мероприятий (особенно негативных) приводит к необходимости моделирования динамики изменения основных параметров системы, динамики взаимодействия открытой системы с его окружением (ресурсы, потенциал, условия, технологии и т.д.), с которым осуществляется обмен ресурсами в условиях враждебных, конкурентных, кооперативных или же безразличных взаимоотношений. Здесь необходимы системный подход, эффективные методы и критерии оценки адекватности моделей, которые направлены не только (не столько) на максимизацию критериев типа "прибыль", "рентабельность", но и на оптимизацию отношений с окружающей средой. Если критерии первого типа важны, например, для кратко- и среднесрочного прогнозирования и тактического администрирования, то второго типа - для средне- и долгосрочного прогноза, для стратегического администрирования. При этом необходимо выделить и изучить достаточно полную и информативную систему параметров исследуемой системы и его окружения, разработать методику введения мер информативности и близости состояний системы. Важно отметить, что при этом некоторые критерии и меры могут часто конфликтовать друг с другом.
Многие такие социально-экономические системы можно описывать с единых позиций, средствами и методами единой теории - эволюционной.
При эволюционном моделировании процесс моделирования сложной социально-экономической системы сводится к созданию модели его эволюции или к поиску допустимых состояний системы, к процедуре (алгоритму) отслеживания множества допустимых состояний (траекторий). При этом актуализируются такие атрибуты биологической эволюционной динамики (в скобках даны возможные социально-экономические интерпретации этих атрибутов для эволюционного моделирования) как, например:
При исследовании эволюции системы необходима ее декомпозиция на подсистемы с целью обеспечения:
Пусть имеется некоторая система S с N подсистемами. Для каждой i-й подсистемы определим вектор x(i)=(x1(i),x2(i),:,xni(i)) основных параметров (т.е. параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями и доступными ресурсами системы) и функцию s(i)=s(x(i)), которую назовем функцией активности или просто активностью этой подсистемы.
Пример. В бизнес-процессах это понятие близко к понятию деловой активности.
Для всей системы определены вектор состояния системы x и активность системы s(x), а также понятие общего потенциала системы.
Пример. Потенциал активности может быть определен аналогично биологическому потенциалу популяции, например, с помощью интеграла от активности на задаваемом временном промежутке моделирования.
Эти функции отражают интенсивность процессов как в подсистемах, так и в системе в целом.
Важными для задач моделирования являются три значения s(i)max, s(i)min, s(i)opt - максимальные, минимальные и оптимальные значения активности i-й подсистемы, а также аналогичные значения для всей системы (smax, smin, sopt). В качестве показателя экономического состояния можно брать также отношение значения этого показателя к его нормированному значению, а для комплексного учета влияния параметров на состояние системы можно использовать аналоги меры информационной близости, например, по К. Шеннону.
Если дана открытая экономическая система (процесс), а Н0, Н1 - энтропия системы в начальном и конечном состояниях процесса, то мера информации определяется как разность вида:
ΔН=Н0-Н1.
Уменьшение ΔН свидетельствует о приближении системы к состоянию статического равновесия (при доступных ресурсах), а увеличение - об удалении. Величина ΔН - количество информации, необходимой для перехода от одного уровня организации системы к другой (при ΔН>0 - более высокой, при ΔН<0 - более низкой организации).
Возможен подход и с использованием меры по Н. Моисееву. Пусть дана некоторая управляемая система, о состояниях которой известны лишь некоторые оценки - нижняя smin и верхняя smax. Известна целевая функция управления F(s(t),u(t)), где s(t) - состояние системы в момент времени t, а u(t) - управление из некоторого множества допустимых управлений, причем считаем, что достижимо uopt - некоторое оптимальное управление из пространства U, t0<t<T, sminssmax. Мера успешности принятия решения:
Информация о работе Введение в анализ, синтез и моделирование систем