Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций
В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах
1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем
Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.
Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле.
Модель структурная, если она представима структурой данных или структурами данных и отношениями между ними.
Пример. Структурной моделью может служить описание (табличное, графовое, функциональное или другое) трофической структуры экосистемы. Постройте такую модель (одна из них была приведена выше).
Модель графовая, если она представима графом или графами и отношениями между ними.
Модель иерархическая (древовидная), если представима некоторой иерархической структурой (деревом).
Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 10.2):
Рис. 10.2. Модель иерархической структуры
Модель сетевая, если она представима некоторой сетевой структурой.
Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.
Таблица работ при строительстве дома | ||||
№ | Операция | Время выполнения (дни) | Предшествующие операции | Дуги графа |
1 | Расчистка участка | 1 | нет | - |
2 | Закладка фундамента | 4 | Расчистка участка (1) | 1-2 |
3 | Возведение стен | 4 | Закладка фундамента (2) | 2-3 |
4 | Монтаж электропроводки | 3 | Возведение стен (3) | 3-4 |
5 | Штукатурные работы | 4 | Монтаж электропроводки (4) | 4-5 |
6 | Благоустройство территории | 6 | Возведение стен (3) | 3-6 |
7 | Отделочные работы | 4 | Штукатурные работы (5) | 5-7 |
8 | Настил крыши | 5 | Возведение стен (3) | 3-8 |
Сетевая модель (сетевой график) строительства дома дана на рис. 10.3.
Рис. 10.3. Сетевой график строительства работ
Две работы, соответствующие дуге 4-5, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой длительностью 3+5=8, либо ввести на одной дуге фиктивное событие, тогда дуга 4-5 примет вид.
Модель языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.
Пример. Правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модель M словообразования: <zi><=<pi>:=<bi>+<si>. При bi - "рыб(а)", si - "н(ый)", получаем по этой модели pi - "рыбный", zi - "приготовленный из рыбы".
Модель визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.
Пример. На экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе-тренажере по обучению работе на клавиатуре.
Модель натурная, если она есть материальная копия объекта моделирования.
Пример. Глобус - натурная географическая модель земного шара.
Модель геометрическая, графическая, если она представима геометрическими образами и объектами.
Пример. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм.
Модель клеточно-автоматная, если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Это "мир" некоторого автомата, исполнителя, структуры. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Такие клеточные поля могут быть вещественно-энерго-
Клеточные автоматы (поля) могут быть одномерными, двумерными (с ячейками на плоскости), трехмерными (с ячейками в пространстве) или же многомерными (с ячейками в многомерных пространствах).
Пример. Классическая клеточно-автоматная модель - игра "Жизнь" Джона Конвея. Она описана во многих книгах. Мы рассмотрим другую клеточно-автоматную модель загрязнения среды, диффузии загрязненителя в некоторой среде. 2D-клеточный автомат (на плоскости) для моделирования загрязнения среды может быть сгенерирован следующими правилами:
плоскость разбивается на одинаковые клетки: каждая клетка может находиться в одном из двух состояний: состояние 1 - в ней есть диффундирующая частица загрязнителя, и состояние 0 - если ее нет;
клеточное поле разбивается на блоки 2×2 двумя способами, которые будем называть четным и нечетным разбиениями (у чётного разбиения в кластере или блоке находится четное число точек или клеток поля, у нечетного блока - их нечетное число);
на очередном шаге эволюции каждый блок четного разбиения поворачивается (по задаваемому правилу распространения загрязнения или генерируемому распределению случайных чисел) на заданный угол (направление поворота выбирается генератором случайных чисел);
аналогичное правило определяется и для блоков нечетного разбиения;
процесс продолжается до некоторого момента или до очищения среды.
Пусть единица времени - шаг клеточного автомата, единица длины - размер его клетки. Если перебрать всевозможные сочетания поворотов блоков четного и нечетного разбиения, то видим, что за один шаг частица может переместиться вдоль каждой из координатных осей на расстояние 0, 1 или 2 (без учета направления смещения) с вероятностями, соответственно, p0=1/4, p1=1/2, p2=1/4. Вероятность попадания частицы в данную точку зависит лишь от ее положения в предыдущий момент времени, поэтому рассматриваем движение частицы вдоль оси х (y) как случайное.
На рис. 10.4 - фрагменты работы программы клеточно-автоматной модели загрязнения клеточной экосреды (размеры клеток увеличены).
Рис. 10.4. Окно справа - состояние клеточного поля (в верхнем - исходное, слабо загрязненное, в нижнем - после 120 циклов загрязнения), в левом верхнем углу - "Микроскоп", увеличивающий кластер поля, в середине слева - график динамики загрязнения, внизу слева - индикаторы загрязнения
Модель фрактальная, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, можно считать, что плотность не зависит от размера. Например, при увеличении R до 2R масса увеличится в R2 раз (круг) и в R3 раз (шар), т.е. M(R)~Rn (связь массы и длины), n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Плотность его
Если объект (система) удовлетворяет соотношению M(R)~Rf(n), где f(n)<n, то такой объект называется фрактальным. Его плотность не будет одинаковой для всех значений R, а масштабируется так:
Так как f(n)-n<0, то плотность фрактального объекта уменьшается с увеличением размера, а ρ(R) является количественной мерой разряженности, ветвистости (структурированности) объекта.
Пример. Пример фрактальной модели - множество Кантора. Рассмотрим [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, назывемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 10.5)
Рис. 10.5. Множество Кантора для 3-х делений
Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3≈0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка. Фрактальные объекты самоподобны, если они выглядят одинаково в любом пространственном масштабе, масштабно инвариантны, фрагменты структуры повторяются через определенные пространственные промежутки. Поэтому они очень хорошо подходят для моделирования нерегулярностей, так как позволяют описывать (например, дискретными моделями) эволюцию таких систем для любого момента времени и в любом пространственном масштабе.
Самоподобие встречается в самых разных предметах и явлениях.
Пример. Самоподобны ветки деревьев, снежинки, экономические системы (волны Кондратьева), горные системы.
Фрактальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели, когда имеем дело с нелинейностью (многовариантностью путей развития и необходимостью выбора) и недетерминированностью, хаотичностью и необратимостью эволюционных процессов.
Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений его подсистем и элементов, а не от его физической природы.
Пример. Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.
Границы между моделями различного типа или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.
Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=<O, Z, A, B, C>.
Основные свойства любой модели:
целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
приблизительность - действительность отображается моделью грубо или приблизительно;
адекватность - модель должна успешно описывать моделируемую систему;
наглядность, обозримость основных ее свойств и отношений;
доступность и технологичность для исследования или воспроизведения;
информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
целостность - модель реализует некоторую систему (т.е. целое);
замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
эволюционируемость - возможность развития моделей (предыдущего уровня).
Жизненный цикл моделируемой системы:
сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
проектирование структуры и состава моделей (подмоделей);
построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
исследование адекватности, устойчивости, чувствительности модели;
оценка средств моделирования (затраченных ресурсов);
интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
генерация отчетов и проектных (народно-хозяйственных) решений;
уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.
Моделирование - метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель, построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.
Информация о работе Введение в анализ, синтез и моделирование систем