Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций
В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах
1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем
На этапе самоорганизации вырабатывается коллективное, корпоративное поведение (т.е. новый уровень иерархии образования смысла, семантики). В живых системах при этом используется не только связь со средой, но и генетически заложенная информация или информация самоорганизации.
Пример. Стадо буйволов (каждый из которых в отдельности достаточно беззащитен перед стаей хищников) во время нападения самоорганизуется: молодняк - в центре, самцы - по окружности ("рогами наружу"). Это важно для выживания всего стада.
Информация может быть неполной, образной, например, в виде фрагментов, по которым быстро восстанавливается (самоорганизуется) более полная информация. Особенно важно быстро и полно восстанавливать эту информацию. Поэтому необходим процесс обучения, сжатия и передачи информации, знаний от поколения к поколению. Так как области знаний расширяются и углубляются, а информация лавинообразно растет, то важно находить синергетические инварианты, принципы, технологии ее передачи.
Наблюдаемая математизация и информатизация современной науки убедительно показывает, что их эффективность зависит как от данной науки, сложности и возможности адекватного описания ее законов и принципов математическими и информационными моделями, так и от используемого математического аппарата.
Рассматриваются основные понятия моделирования систем, системные типы и свойства моделей, жизненный цикл моделирования (моделируемой системы).
Цель лекции: введение в понятийные основы моделирования систем.
Модель и моделирование - универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания системы, процесса, явления.
Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены. Вид модели и методы его исследования больше зависят от информационно-логических связей элементов и подсистем моделируемой системы, ресурсов, связей с окружением, используемых при моделировании, а не от конкретной природы, конкретного наполнения системы.
У моделей, особенно математических, есть и дидактические аспекты - развитие модельного стиля мышления, позволяющего вникать в структуру и внутреннюю логику моделируемой системы.
Построение модели - системная задача, требующая анализа и синтеза исходных данных, гипотез, теорий, знаний специалистов. Системный подход позволяет не только построить модель реальной системы, но и использовать эту модель для оценки (например, эффективности управления, функционирования) системы.
Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств. Модель - результат отображения одной структуры (изученной) на другую (малоизученную). Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений), получим физико-математическую модель системы или математическую модель физической системы. Любая модель строится и исследуется при определенных допущениях, гипотезах.
Пример. Рассмотрим физическую систему: тело массой m скатывающееся по наклонной плоскости с ускорением a, на которое воздействует сила F. Исследуя такие системы, Ньютон получил математическое соотношение: F=ma. Это физико-математическая модель системы или математическая модель физической системы. При описании этой системы (построении этой модели) приняты следующие гипотезы: 1) поверхность идеальна (т.е. коэффициент трения равен нулю); 2) тело находится в вакууме (т.е. сопротивление воздуха равно нулю); 3) масса тела неизменна; 4) тело движется с одинаковым постоянным ускорением в любой точке.
Пример. Физиологическая система - система кровообращения человека - подчиняется некоторым законам термодинамики. Описывая эту систему на физическом (термодинамическом) языке балансовых законов, получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то уже получим математическую модель системы кровообращения. Назовем ее физиолого-физико-
Пример. Совокупность предприятий функционирует на рынке, обмениваясь товарами, сырьем, услугами, информацией. Если описать экономические законы, правила их взаимодействия на рынке с помощью математических соотношений, например, системы алгебраических уравнений, где неизвестными будут величины прибыли, получаемые от взаимодействия предприятий, а коэффициентами уравнения будут значения интенсивностей таких взаимодействий, то получим математическую модель экономической системы, т.е. экономико-математическую модель системы предприятий на рынке.
Пример. Если банк выработал стратегию кредитования, смог описать ее с помощью экономико-математических моделей и прогнозирует свою тактику кредитования, то он имеет большую устойчивость и жизнеспособность.
Слово "модель" (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью".
Моделирование базируется на математической теории подобия, согласно которой абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании большинства систем (за исключением, возможно, моделирования одних математических структур другими) абсолютное подобие невозможно, и основная цель моделирования - модель достаточно хорошо должна отображать функционирование моделируемой системы.
Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.
Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.
Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.
Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей.
Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.
По уровню, "глубине" моделирования модели бывают:
эмпирические - на основе эмпирических фактов, зависимостей;
теоретические - на основе математических описаний;
смешанные, полуэмпирические - на основе эмпирических зависимостей и математических описаний.
Проблема моделирования состоит из трех задач:
построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);
исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);
использование модели (конструктивная и конкретизируемая задача).
Модель М, описывающая систему S(x1, x2, ..., xn; R), имеет вид: М=(z1, z2, ..., zm; Q), где ziZ, i=1, 2, ..., n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы, Z - множество описаний, представлений элементов и подмножеств X.
Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 10.1.
Рис. 10.1. Схема построения модели
Если на вход М поступают сигналы из X и на входе появляются сигналы Y, то задан закон, правило f функционирования модели, системы.
Моделирование - это универсальный метод получения, описания и использования знаний. Он используется в любой профессиональной деятельности. В современной науке и технологии роль и значение моделирования усиливается, актуализируется проблемами, успехами других наук. Моделирование реальных и нелинейных систем живой и неживой природы позволяет перекидывать мостики между нашими знаниями и реальными системами, процессами, в том числе и мыслительными.
Классификацию моделей проводят по различным критериям. Мы будем использовать наиболее простую и практически значимую.
Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.
Пример. Закон Ньютона F=am - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.
Модель динамическая, если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.
Пример. Модель S=gt2/2 - динамическая модель пути при свободном падении тела. Динамическая модель типа закона Ньютона: F(t)=a(t)m(t). Еще лучшей формой динамической модели Ньютона является F(t)=s″(t)m(t).
Модель дискретная, если она описывает поведение системы только в дискретные моменты времени.
Пример. Если рассматривать только t=0, 1, 2, :, 10 (сек), то модель St=gt2/2 или числовая последовательность S0=0, S1=g/2, S2=2g, S3=9g/2, :, S10=50g может служить дискретной моделью движения свободно падающего тела.
Модель непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.
Пример. Модель S=gt2/2, 0<t<100 непрерывна на промежутке времени (0;100).
Модель имитационная, если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.
Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x1 и x2 единиц и стоимостью каждой единицы товара a1 и a2 на предприятии описана в виде соотношения: a1x1+a2x2=S, где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели, по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов производимых товаров.
Модель детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).
Пример. Приведенные выше физические модели - детерминированные. Если в модели S=gt2/2, 0<t<100 мы учли бы случайный параметр - порыв ветра с силой p при падении тела, например, так: S(p)=g(p)t2/2, 0<t<100, то мы получили бы стохастическую модель (уже не свободного!) падения.
Модель функциональная, если она представима в виде системы каких- либо функциональных соотношений.
Пример. Непрерывный, детерминированный закон Ньютона и модель производства товаров (см. выше) - функциональные.
Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.
Пример. Пусть заданы множество X={Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения: Николай - супруг Елены, Екатерина - супруга Петра, Татьяна - дочь Николая и Елены, Михаил - сын Петра и Екатерины, семьи Михаила и Петра дружат друг с другом. Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей.
Модель логическая, если она представима предикатами, логическими функциями.
Пример. Совокупность двух логических функций вида: z=xyxy, p=xy может служить математической моделью одноразрядного сумматора.
Модель игровая, если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями).
Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i,jn), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов (в средне- и долгосрочном плане штраф за сокрытие может оказаться намного более ощутимым). Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу aij=|i-j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая, бескоалиционная (формализуемые в математической теории игр понятия мы пока будем понимать содержательно, интуитивно).
Информация о работе Введение в анализ, синтез и моделирование систем