Введение в анализ, синтез и моделирование систем

Автор: Пользователь скрыл имя, 19 Марта 2012 в 14:50, курс лекций

Описание работы

В курсе изложены основы системного анализа, синтеза и моделирования систем, которые необходимы при исследовании междисциплинарных проблем, их системно-синергетических основ и связей. Курс предназначен для студентов, интересующихся не только тем, как получить конкретное решение конкретной проблемы (что достаточно важно), но и тем, как ставить, описывать, исследовать и использовать такие задачи, находить и изучать общее в развивающихся системах различной природы, особенно, в информационных системах

Содержание

1. Лекция: История, предмет, цели системного анализа
2. Лекция: Описания, базовые структуры и этапы анализа систем
3. Лекция: Функционирование и развитие системы
4. Лекция: Классификация систем
5. Лекция: Система, информация, знания
6. Лекция: Меры информации в системе
7. Лекция: Система и управление
8. Лекция: Информационные системы
9. Лекция: Информация и самоорганизация систем
10. Лекция: Основы моделирования систем
11. Лекция: Математическое и компьютерное моделирование
12. Лекция: Эволюционное моделирование и генетические алгоритмы
13. Лекция: Основы принятия решений и ситуационного моделирования
14. Лекция: Модели знаний
15. Лекция: Новые технологии проектирования и анализа систем

Работа содержит 1 файл

АСИС.doc

— 1.75 Мб (Скачать)

Н(Н0,Н1)=Н0 - Н1.

Эта формула универсальна для любых термодинамических систем. Уменьшение Н(Н0,Н1) свидетельствует о приближении термодинамической системы S к состоянию статического равновесия (при данных доступных ей ресурсах), а увеличение - об удалении.

Поставим некоторый вопрос о состоянии термодинамической системы. Пусть до начала процесса можно дать p1 равновероятных ответов на этот вопрос (ни один из которых не является предпочтительным другому), а после окончания процесса - p2 ответов. Изменение информации при этом:

ΔI=k ln(p1 / p2)=k (ln p1 - ln p2 ).

Если p1>p2 (ΔI>0) - идет прирост информации, т.е. сведения о системе стали более определенными, а при p1<p2 (ΔI<0) - менее определенными. Универсально то, что мы не использовали явно структуру системы (механизм протекания процесса).

Пример. Предположим, что имеется развивающаяся социально-экономическая система с числом состояний 10, которая в результате эволюции развилась до системы с числом состояний 20. Нас интересует вопрос о состоянии некоторого составного элемента системы (например, предприятия). В начале мы знали ответ на вопрос и поэтому p1=1 (lnp1=0). Число ответов было пропорционально величине [ln10]. После развития мы знаем уже микроэкономическое состояние, т.е. изменение информации о состоянии системы равно ΔI = -kln(20/10) = -kln2 (нат).

Пример. Предположим, что имеется термодинамическая система - газ в объеме V , который расширяется до объема 2V (рис. 6.1).


Рис. 6.1.  Газ объема V (a) расширяемый до 2V (б)

Нас интересует вопрос о координате молекулы m газа. В начале (а) мы знали ответ на вопрос и поэтому p1=1 (lnp1=0). Число ответов было пропорционально lnV. После поднятия заслонки мы уже знаем эту координату (микросостояния), т.е. изменение (убыль) информации о состоянии системы будет равно

ΔI = -k ln(2V /V) = -k ln 2  (нат).

Мы получили известное в термодинамике выражение для прироста энтропии в расчете на одну молекулу, и оно подтверждает второе начало термодинамики. Энтропия - мера недостатка информации о микросостоянии статической системы.

Величина ΔI может быть интерпретирована как количество информации, необходимой для перехода от одного уровня организации системы к другому (при ΔI>0 - более высокому, а при ΔI>0 - более низкому уровню организации).

Термодинамическая мера (энтропия) применима к системам, находящимся в тепловом равновесии. Для систем, далеких от теплового равновесия, например, живых биологических систем, мера-энтропия - менее подходящая.

4. Энергоинформационная (квантово-механическая) мера. Энергия (ресурс) и информация (структура) - две фундаментальные характеристики систем реального мира, связывающие их вещественные, пространственные, временные характеристики. Если А - именованное множество с носителем так называемого "энергетического происхождения", а В - именованное множество с носителем "информационного происхождения", то можно определить энергоинформационную меру f: AB, например, можно принять отношение именования для именованного множества с носителем (множеством имен) А или В. Отношение именования должно отражать механизм взаимосвязей физико-информационных и вещественно-энергетических структур и процессов в системе.

Отметим, что сейчас актуальнее говорить о биоэнергоинформационных мерах, отражающих механизм взаимосвязей биофизико-информационных и вещественно-энергетических структур и процессов в системе.

Пример. Процесс деления клеток сопровождается излучением квантов энергии с частотами приблизительно до N=1.5×1015 гц. Этот спектр можно воспринимать как спектр функционирования словарного запаса клетки как биоинформационной системы. С помощью этого спектра можно закодировать до 1015 различных биохимических реакций, что примерно в 107 раз больше количества реакций реально протекающих в клетке (их количество - примерно 108), т.е. словарный запас клетки избыточен для эффективного распознавания, классификации, регулирования этих реакций в клетке. Количество информации на 1 квант энергии: I=log21015≈50 бит. При делении клеток количество энергии, расходуемой на передачу 50 бит информации равно энергии кванта (h - постоянная Планка, n - частота излучения):

E=hν=6,62×10-27 (эрг/cек) × 0,5×1015 (сек-1) =3,3×10-12 (эрг).

При этом на 1 Вт мощности "передатчика" или на μ=107 эрг/сек. может быть передано количество квантов:

n=μ/E=107 (эрг/сек)/(3,3×10-12 (эрг))≈3,3×1018 (квант).

Общая скорость передачи информации на 1 Вт затрачиваемой клеткой мощности определяется по числу различных состояний клетки N и числу квантов (излучений) m:

V=n log2N=3,3×1018×50≈1,6×1020 (бит/сек).

Любая информация актуализируется в некоторой системе. Материальный носитель любой системы - сообщение, сигнал. Любая актуализация сопровождается изменением энергетических свойств (изменением состояния) системы. Наши знания (а, следовательно, и эволюция общества) простираются на столько, на сколько углубляется информация и совершенствуется возможность ее актуализации.

5. Другие меры информации. Многими авторами в последнее время рассматриваются различные количественные меры для измерения смысла информации, например, мера, базирующаяся на понятии цели (А. Харкевич и другие); мера, базирующаяся на понятии тезаурус Т=<X,Y,Z>, где X, Y, Z - множества, соответственно, имен, смыслов и значений (прагматики) этих знаний (Ю. Шрейдер и другие); мера сложности восстановления двоичных слов (А. Колмогоров и другие); меры апостериорного знания (Н. Винер и другие); мера успешности принятия решения (Н. Моисеев и другие); меры информационного сходства и разнообразия и другие способы, подходы к рассмотрению мер информации.

Пример. В качестве меры (Колмогорова) восстановления двоичного слова y по заданному отображению f и заданным двоичным словам x из непустого множества X можно взять H(f,y)=min|x|, xX, f(x)=y. Здесь |x| - длина двоичного слова х.

Пример. Если априори известно, что некоторая переменная лежит в интервале (0;1), и апостериори, что она лежит в интервале (a;b)(0;1), тогда в качестве меры (Винера) количества информации, извлекаемой из апостериорного знания, можно взять отношение меры (a;b) к мере (0;1).

Пример. В биологических науках широко используются так называемые индексные меры, меры видового разнообразия. Индекс - мера состояния основных биологических, физико-химических и др. компонент системы, позволяющая оценить силу их воздействия на систему, состояние и эволюцию системы. Индексы должны быть уместными, общими, интерпретируемыми, чувствительными, минимально достаточными, качественными, широко применяемыми, рациональными. Например, показателем видового разнообразия в лесу может служить

ν = √p1 + √p2 +...+√pn

где p1, p2, ..., pn - частоты видов сообщества, обитающих в лесу, n - число видов.

Вопросы для самоконтроля

  1. Что такое мера информации? Каковы общие требования к мерам информации?
  2. В чем смысл количества информации по Хартли и Шеннону? Какова связь количества информации и энтропии, хаоса в системе?
  3. Какова термодинамическая мера информации? Какова квантово-механическая мера информации? Что они отражают в системе?

Задачи и упражнения

  1. Система имеет N равновероятных состояний. Количество информации в системе (о ее состоянии) равно 5 бит. Чему равна вероятность одного состояния? Если состояние системы неизвестно, то каково количество информации в системе? Если известно, что система находится в состоянии номер 8, то чему равно количество информации?
  2. Некоторая система может находиться в четырех состояниях с вероятностями: в первом (худшем) - 0,1, во втором и третьем (среднем) - 0,25, в четвертом (лучшем) - 0,4. Чему равно количество информации (неопределённость выбора) в системе?
  3. Пусть дана система с p0=0,4, p1=0,5 - вероятности достижения цели управления, соответственно, до и после получения информации о состоянии системы. Оцените меру целесообразности управления этой системой (в битах).

Темы для научных исследований и рефератов, интернет-листов

  1. Энтропия и мера беспорядка в системе. Информация и мера порядка в системе.
  2. Квантово-механический и термодинамический подходы к измерению информации.
  3. Семантические и несемантические меры информации - новые подходы и аспекты.


7. Лекция: Система и управление

Рассматриваются проблемы управления системой (в системе), схема, цели, функции и задачи управления системой, понятие и типы устойчивости системы, элементы когнитивного анализа.

Цель лекции: введение в основную проблему (атрибут) системного анализа - управление системой (в системе).

Благодаря постоянным потокам информации (от системы к окружающей среде и наоборот) система осуществляет целесообразное взаимодействие с окружающей средой, т.е. управляет или бывает управляема. Информация стала средством не только производства, но и управления.

Своевременная и оперативная информация может позволить стабилизировать систему, приспосабливаться и(или) адаптироваться, восстанавливаться при нарушениях структуры и(или) подсистем. От степени информированности системы, от богатства опыта взаимодействия системы и окружающей среды зависит развитие и устойчивость системы.

Информация обладает также определенной избыточностью: чем больше сообщений о системе, тем полнее и точнее она управляется.

Пример. При передаче сообщений часто применяют способ двукратной (избыточной) последовательной передачи каждого символа (что позволяет избавляться от помех, "шумов" при передаче и осуществлять, например, контроль четности сигналов, по результатам которого выявляется количество сбоев). Пусть в результате сбоя при передаче приемником принято было слово вида "прраосснтоо". Определим, какое осмысленное (имеющее семантический смысл) слово русского языка передавалось передатчиком. Легко заметить, что "претендентами на слово" являются слова "праспо", "проспо", "рроспо", "ррасто", "прасто", "рросто", "просто" и "рраспо". Из всех этих слов осмысленным является только слово "просто".

Суть задачи управления системой - отделение ценной информации от "шумов" (бесполезного, иногда даже вредного для системы возмущения информации) и выделение информации, которая позволяет этой системе существовать и развиваться. Управление - это целенаправленная актуализация знаний. Управление и особая форма - самоуправление, - высшая форма актуализации знаний.

Управление в системе - внутренняя функция системы, осуществляемая независимо от того, каким образом, какими элементами системы она должна выполняться.

Управление системой - выполнение внешних функций управления, обеспечивающих необходимые условия функционирования системы (см. рис. 7.1).


Рис. 7.1.  Общая схема управления системой

Управление системой (в системе) используется для различных целей:

  1. увеличения скорости передачи сообщений;
  2. увеличения объема передаваемых сообщений;
  3. уменьшения времени обработки сообщений;
  4. увеличения степени сжатия сообщений;
  5. увеличения (модификации) связей системы;
  6. увеличения информации (информированности).

Как правило, эти цели интегрируются.

В целом информация используется для двух основных глобальных целей: сохранения стабильного функционирования системы и перевода системы в заданное целевое состояние.

Пример. Появление возможности управлять электрическими и магнитными колебаниями сделало массово доступным радио, телевидение, при этом скорость передачи информации достигла скорости света; пропускная способность телеканала по сравнению с пропускной способностью телефонного канала выросла примерно в 2000 раз, ускорение обработки - в миллионы раз. Возросла и сжатость информации, и информативность сообщений.

Управление любой системой (в любой системе) должно подкрепляться необходимыми ресурсами - материальными, энергетическими, информационными, людскими и организационными (административного, экономического, правового, гуманитарного, социально-психологического типа). При этом характер и степень активизации этих ресурсов может повлиять (иногда лишь косвенно) и на систему, в которой информация используется. Более того, сама информация может быть зависима от системы.

Пример. В средствах массовой информации правительство чаще ругают, актеров чаще хвалят, спортсменов упоминают обычно в связи со спортивными результатами, прогноз погоды бывает, как правило, кратким, новости политики - официальными.

Управление - непрерывный процесс, который не может быть прекращен, ибо движение, поток информации в системе не прекращается.

Цикл управления любой системой (в любой системе) таков:

{ сбор  информации о системе

                   обработка и анализ информации

                             получение информации о траектории

                                        выявление управляющих параметров 

                                                 определение ресурсов для управления  

                                                             управление траекторией  системы }

Основные правила организации информации для управления системой:

  1. выяснение формы и структуры исходной (входной) информации;
  2. выяснение средств, форм передачи и источников информации;
  3. выяснение формы и структуры выходной информации;
  4. выяснение надежности информации и контроль достоверности;
  5. выяснение форм использования информации для принятия решений.

Пример. При управлении полетом ракеты, наземная станция управления генерирует и в определенной форме, определенными структурами посылает входную информацию в бортовую ЭВМ ракеты; при этом сигналы отсеиваются от возможных "шумов", осуществляется контроль входной информации на достоверность и только затем бортовая ЭВМ принимает решение об уточнении траектории, ее корректировке.

Информация о работе Введение в анализ, синтез и моделирование систем