Автор: Пользователь скрыл имя, 26 Февраля 2012 в 22:47, курс лекций
1.Базовые категории финансового менеджмента: капитал, прибыль, финансовые ресурсы, денежный поток
1.1. Стоимость и капитал
В отличие от показателей купонной и текущей доходности, YTM реагирует на изменение числа купонных выплат в течение года. В случае, если это число превышает единицу, необходимо скорректировать ожидаемый денежный поток. Например, вместо одноразовой выплаты 750 рублей в год, эмитент решил выплачивать по 375 рублей каждое полугодие. В этом случае денежный поток будет иметь следующую структуру: -2775, 375, 375, 375, 375, 375, 3375. Соответственно, изменится уравнение для расчета YTM:
.
Доходность к погашению в этом случае составит ≈ 30,99%.
Безусловно, показатель доходности к погашению не является идеальным. Будучи средней эффективной процентной ставкой, он “заглаживает” возможные колебания доходности в течение периода владения облигацией. Кроме того, он совершенно не учитывает индивидуальные возможности реинвестирования доходов, которые имеются у отдельных инвесторов: эффективная ставка предполагает однократное реинвестирование в течение года. Тем не менее, пока еще не изобретено иного способа подсчета доходности, который в такой же степени чутко реагировал бы на любые изменения ожидаемого денежного потока. Поэтому именно YTM (и его разновидность YTC) получили наиболее широкое применение в финансовом анализе. Не следует забывать, что эти показатели являются ничем иным как разновидностями основополагающего финансового понятия – внутренней нормы доходности (IRR).
Наряду с купонными существуют облигации с нулевым купоном (бескупонные или дисконтные). Доход по ним образуется только за счет разницы между ценой покупки и продажи. Как правило, они продаются со скидкой (дисконтом) от номинальной цены, а выкупаются по номиналу. К этим инструментам вообще неприменимы понятия купонной и текущей доходности: их полная доходность включает в себя только вторую составляющую – прирост стоимости капитала. Методика расчета доходности краткосрочных дисконтных облигаций (например, ГКО) уже неоднократно рассматривалась в настоящем пособии, поэтому в данном параграфе будут рассмотрены только долгосрочные (с продолжительностью свыше 1 года) финансовые инструменты. Очевидно, что измерителем доходности таких инвестиций должна являться сложная процентная ставка. Рассмотрим пример: двухлетняя дисконтная облигация номиналом 10 тыс. рублей продается по курсу 78. Следовательно, общая сумма дохода к концу второго года по ней составит 2 тыс. 200 рублей (10000 – 7800). Доходность к погашению этой облигации может быть найдена из уравнения:
По сути дела, задача сводится к определению сложной эффективной годовой ставки по формуле (2.2.15). Применив эту формулу, получим YTM = 13,228% ((10000 / 7800)1/2 – 1). Иными словами, разместив на банковский депозит 7800 рублей под эффективную ставку 13,228%, через 2 года с него можно было бы снять наращенную сумму 10 тыс. рублей (7800 * (1 + 0,13228)2). Точно такой же результат можно получить, применив компьютерную функцию ВНДОХ для денежного потока (-7800, 0, 10000). Однако в данном случае задача проще, чем при расчете YTM купонных облигаций, поэтому нет необходимости для усложнения расчетов: достаточно помнить формулу определения эффективной ставки (2.2.15).
Ожидаемая доходность бессрочных облигаций, по которым выплачиваются “вечные” ренты, рассчитывается по формуле:
, где (5.3.3)
C – сумма ежегодных купонных выплат;
P – цена приобретения облигации.
Очевидно, что этот показатель отражает только текущую доходность, так как условиями размещения подобных займов не предусматривается выплата каких-то иных доходов. Тем не менее, никто не мешает инвестору запланировать перепродажу облигации через несколько лет владения ею по цене, которая может отличаться от цены покупки. В этом случае он сможет рассчитать доходность к погашению данного инструмента. Например, покупая за 46 фунтов стерлингов бессрочную консоль Казначейства Великобритании, по которой ежегодно выплачивается доход в сумме 4 фунта стерлингов, инвестор может рассчитывать на годовую доходность 8,696% (4 / 46). Однако, если по его “расчислению” через два года он сможет продать эту облигацию на вторичном рынке за 50 фунтов, то ее доходность к погашению (точнее, к перепродаже) должна находиться путем решения следующего уравнения:
irr (а следовательно, и доходность к погашению облигации) данного денежного потока составит ≈ 12,78%. Применив приближенную формулу расчета (5.2.3), получим:
Основное отличие акций состоит в неопределенности величины ожидаемых по ним доходов. В этом смысле можно выделить привилегированные акции, дивиденды по которым, как правило, известны заранее и должны выплачиваться раньше дивидендов по обыкновенным акциям. По сути дела привилегированные акции являются промежуточной стадией между собственным (обыкновенные акции) и заемным (облигации) капиталом. Для определения их доходности используется формула, аналогичная применяемой для бессрочных облигаций:
, где (5.3.4)
div – сумма ожидаемых дивидендов на 1 акцию,
P – цена приобретения акции.
Точно так же, как для бессрочных облигаций, в случае планируемой перепродажи акции на вторичном рынке, полная доходность владения ею может быть определена как YTM.
Для обыкновенных акций прогнозирование величины будущих дивидендов является наиболее важной и самой сложной проблемой. Чаще всего при этом используется модель постоянного роста (модель Гордона), предполагающая неизменный в обозримом будущем темп прироста суммы дивидендов, выплачиваемы по акции. Ожидаемая доходность владения акцией в этом случае будет находиться по следующей формуле:
, где (5.3.5)
P – цена покупки акции;
D0 – последний выплаченный дивиденд по акции;
D1 – дивиденд, ожидаемый к выплате в ближайшем периоде в будущем;
g – ожидаемый темп прироста дивиденда в будущем.
Например, на рынке имеется предложение обыкновенных акций по цене 250 рублей за 1 шт. Известно, что в прошлом году по ним был выплачен дивиденд в сумме 30 рублей на 1 акцию. В дальнейшем ожидается непрерывный рост дивиденда на 2% в год. Ожидаемая доходность акции составит:
Абсолютно все формулы, рассмотренные в данном параграфе, строились на предположении об определенности потоков будущих доходов, выплачиваемых владельцам ценных бумаг. Однако в реальности 100%-й определенности практически никогда не существует. Даже самые надежные инструменты (например, правительственные облигации) несут в себе опасность того, что фактический результат может значительно отличаться от ожидаемого: высокая инфляция может “съесть” весь фиксированный доход по облигации, несмотря на четкое выполнение эмитентом своих номинальных обязательств. Следовательно, во всех финансовых расчетах должен присутствовать еще один важнейший параметр (о котором практически ничего не было сказано в предыдущих параграфах), характеризующий меру неопределенности, сопряженную с возможностью получения ожидаемого дохода. В финансах эта неопределенность обозначается термином риск, отражающим вероятность получения результата, отличающегося от запланированного. Так как важнейшим результатом любой финансовой операции является получение дохода на инвестиции, величина риска отождествляется со степенью разброса фактической доходности операции вокруг ее ожидаемой величины. Чем больше разброс данных, тем рискованнее финансовая операция.
Возвращаясь к рассмотренным выше формулам, можно сказать, что все полученные с их помощью результаты являются не более, чем субъективными оценками. Каждому результату должна быть приписана вероятность его возникновения в будущем. Большинство из них предполагает наличие вариантов, то есть множественность исходов. Поэтому от прогнозирования однозначных цифр необходимо перейти к изучению распределения вероятностей того или иного события. Без этого заучивание рассмотренных формул становится бессмысленным занятием, а попытки их практического применения обернутся существенным материальным ущербом для инвестора..
5.4. Риск и его виды
С введением в рассмотрение концепции риска, коренным образом меняется подход к оценке роли финансового менеджмента в системе управления предприятием. Основная цель управления – максимизация богатства собственников проявляется как в увеличении номинального собственного капитала, так и в росте рыночной капитализации бизнеса. Очевидно, что и тому и другому способствует повышение доходности вложенного капитала. Увеличивать стоимость предприятия можно только реализуя наиболее высокодоходные инвестиционные проекты. Роль финансового менеджера сводится к отбору и оценке наиболее перспективных проектов и поиску источников их финансирования. Вполне естественным может показаться предположение, что важнейшим критерием отбора как раз и является уровень доходности проекта. Однако, такой прямолинейный подход игнорирует фундаментальную финансовую истину – более высокий ожидаемый доход сопряжен с более высоким риском его неполучения или риском потери вложенного капитала.
Поэтому, анализируя любой инвестиционный проект, финансист прежде всего должен оценить уровень связанного с ним риска и только потом определять, достаточна ли планируемая рентабельность проекта для компенсации этого риска. Оценка риска предполагает его количественное измерение, что довольно непросто, принимая во внимание значительную эмоциональную насыщенность данного термина. Финансисты избежали соблазна соизмерять величину риска с количеством выпитого шампанского и условились понимать под ним степень неопределенности результата, точнее – вариацию (разброс) ожидаемых значений доходности вокруг ее средней величины (математического ожидания). Под математическим ожиданием понимается среднеарифметическая из всех прогнозируемых значений доходности, взвешенная по вероятности достижения ею этих значений.
Такая трактовка риска позволила унифицировать подход к его различным видам. С позиции конкретного предприятия существует большое число видов самых разнообразных рисков, которые могут повлиять на уровень доходности реализуемых проектов: риск процентной ставки, валютные риски, инфляционный, политический, страновый и многие другие виды рисков. Однако, с позиции инвестора все эти риска могут быть объединены в одну группу – общий риск или риск отдельных ценных бумаг (рис. 5.4.1). Наряду с перечисленными видами общего риска, внешними по отношению к предприятию, существуют внутренние общие риски, для измерения которых используются показатели операционного и финансового левериджа. Первый из них был рассмотрен в гл. 3 данного пособия, о втором речь пойдет несколько позже.
Инвестор как правило не держит только один вид ценных бумаг. Житейский принцип “не складывать все яйца в одну корзину” подсказывает, что значительно безопаснее обладать набором из нескольких финансовых инструментов, выпущенных различными эмитентами: так называемым портфелем инвестиций. В этом случае более важным для инвестора является не уровень общего риска каждой ценной бумаги в отдельности, а совокупный риск инвестиционного портфеля или рыночный риск. Объединяя различные финансовые инструменты в портфель, инвестор стремится максимально диверсифицировать риск, то есть избежать одновременного изменения доходности каждого инструмента в одном и том же направлении. Та часть рыночного риска, которая поддается такой диверсификации называется несистематическим или диверсифицируемым риском. Величина рыночного риска, не поддающаяся диверсификации называется систематическим (недиверсифицируемым) риском. Чем меньше бумаг в портфеле, тем выше величина несистематического риска, которая может быть снижена путем диверсификации портфеля, то есть путем помещения в него все большего числа различных финансовых активов. Считается, что портфель, состоящий из 40 случайным образом отобранных акций, является в достаточной степени диверсифицируемым и добавление в него каждой новой акции уже не будет давать столь же высокого снижения несистематического риска, как это было для первых 40 ценных бумаг.
Пределом для диверсификации служит уровень риска, присущий данному финансовому рынку в целом. Такой риск называется систематическим, он определяется не спецификой отдельных бумаг, обращающихся на рынке, а общими тенденциями, характерными для рынка в целом: общим ростом или понижением деловой активности. Индикаторами общего состояния рынка являются рассмотренные в предыдущей главе индексы, например – DJIA или S&P 500. Репрезентативность этих индексов позволяет использовать их для характеристики состояния конкретного финансового рынка (например NYSE) в целом. Можно сказать, что фондовые индексы отражают поведение некой “средней” акции, вобравшей в себя все специфические особенности отдельных активов, обращающихся на данном рынке.
Диверсификация инвестиционного портфеля является наиболее очевидным и простым способом минимизации риска. Если воспользоваться статистической терминологией, диверсифицируемый риск отражается в степени корреляции между отдельными активами, входящими в портфель. Наличие высокой положительной корреляции (коэффициент корреляции близкий к +1) увеличивает несистематический риск портфеля; при отрицательных значениях коэффициента корреляции этот риск минимизируется. Однако, наряду со взаимосвязями между акциями, входящими в портфель, существует корреляция их доходности с доходностью рынка в целом, то есть поведением “средней” акции. Влияние этой связи нельзя устранить путем простой диверсификации портфеля, поэтому управление инвестиционным риском предполагает использование более сложных методов. Для правильного понимания их сути необходимо более подробно рассмотреть общие принципы количественного измерения риска.
Рисунок 5.4.1. Классификация инвестиционных рисков
5.5. Количественное измерение риска
Средняя арифметическая ожидаемых доходностей (ri) инвестиций, взвешенная по вероятности возникновения отдельных значений, называется математическим ожиданием. Условимся называть эту величину средней ожидаемой доходностью:
, (5.5.1)
где pi – вероятность получения доходности ri.
В статистике количественным измерителем степени разброса значений переменной вокруг ее средней величины (математического ожидания) является показатель дисперсии (σ2):
(5.5.2)
Квадратный корень из дисперсии называется средним квадратическим или стандартным отклонением σ:
(5.5.3)
Данный показатель используется в финансовом менеджменте для количественного измерения степени риска планируемых инвестиций. Чем больше разброс ожидаемых значений доходности вложений вокруг их среднеарифметической величины, тем выше риск, сопряженный с данным вложением. Фактическая величина доходности может быть как значительно выше, так и значительно ниже ее средней величины.
Информация о работе Лекции по "Основы финансового менеджмента"