Автор: Пользователь скрыл имя, 05 Октября 2011 в 16:35, реферат
Биохи́мия — наука о химическом составе живых клеток и организмов, химических процессах, лежащих в основе их жизнедеятельности.
Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение , сыроварение , виноделие , выделка кож . Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений . Использование растений в пищу , для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения.
Функции углеводов:
Строение клетки
Строение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.
Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).
Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.
Рис. 1.6. Схема строения мембраны: а — трехмерная модель; б — плоскостное изображение; 1 — белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 — слои молекул липидов; 3 — гликопротеины; 4 — гликолипиды; 5 — гидрофильный канал, функционирующий как пора.
В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно развлетвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.
Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.
Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.
Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание — необходимый этап, предшествующий оплодотворению.
Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.
Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.
Существует несколько механизмов транспорта веществ через мембрану.
Диффузия —проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).
При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.
Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемые ионные насосы. Наиболее изученным является Na-/ К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К-. Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.
В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+.
В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нукле-отиды, аминокислоты.
Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем — посредством эндоцитоза. При эндоци-тозе {эндо... — внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.
Процесс, обратный эндоцитозу, — экзоцитоз (экзо... — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пу-
зырьки. Пузырек
подходит к цитоплазматической мембране,
сливается с ней, а его содержимое
выделяется в окружающую среду. Гак
выводятся пищеварительные
Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.
Клеточная стенка (оболочка) является неотъемлемым компонентом клеток растений и грибов и представляет собой продукт их жизнедеятельности. Она придает клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.
Клеточная стенка, формирующаяся во время деления клеток и их роста путем растяжения, называется первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои, и образуется прочная вторичная клеточная оболочка.
В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов), компоненты матрикса (гемицеллюлоза, пектин, белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск).
Молекулы целлюлозы за счет водородных связей объединяются в пучки —микрофибриллы. Переплетенные микрофибриллы составляют каркас клеточной оболочки. У большинства грибов микрофибриллы клеточной стенки состоят из хитина.
Микрофибриллы
погружены в матрикс клеточной
стенки. Матрикс состоит из смеси
различных химических веществ, среди
которых преобладают
Гемицеллюлозы — это группа полисахаридов (полимеры пен-тоз и гексоз — ксилозы, галактозы, маннозы, глюкозы и др.). Молекулы гемицеллюлоз, как и целлюлозы, имеют форму цепи, но в отличие от последней их цепи короче, менее упорядочены и сильно разветвлены. Они легче растворяются и разрушаются ферментами.
Пектиновые вещества — это полимеры, построенные из моносахаридов (арабинозы и галактозы), галактуроновой кислоты (сахарной кислоты) и метилового спирта. Длинные молекулы пектиновых веществ могут быть линейны ми или разветвленными. Молекулы пектиновых веществ содержат большое количество карбоксильных групп и поэтому способны соединяться с ионами Mg2+ и Са2-. При этом образуются клейкие, студнеобразные пектаты магния и кальция, из которых затем складываются срединные пластинки, скрепляющие стенки двух соседних клеток.
Ионы двухвалентных металлов могут обмениваться на другие катионы (Н-, К+ и т. д.). Это обусловливает катионообменную способность клеточных оболочек.
Пектиновыми веществами и пектатами богаты оболочки клеток многих плодов. Так как при их извлечении из оболочек и добавлении сахара образуются гели, пектины используют как желе-образующие вещества для изготовления мармелада и др.
Помимо углеводных компонентов, в состав матрикса клеточной стенки входит структурный белок экстенеин —гликонроте-ин, который по своему составу близок к межклеточным белкам животных —коллагенам.
На долю матрикса приходится до 60% сухого вещества клеточной оболочки. Матрикс оболочки не просто заполняет промежутки между микрофибриллами, а образует прочные химические (водородные и ковалентные) связи между макромолекулами и микрофибриллами, что обеспечивает прочность клеточной стенки, ее эластичность и пластичность.
Основным инкрустирующим веществом оболочки клеток растений является лигнин — полимер с неразветвленной молекулой, состоящей из ароматических спиртов.
Интенсивная лигнификация (пропитка слоев целлюлозы лигнином) клеточных оболочек начинается после прекращения роста клетки. Лигнин может откладываться отдельными участками — в виде колец, спиралей или сетки, как это наблюдается в оболочках клеток проводящей ткани — ксилемы, или сплошным слоем, за исключением тех мест, где осуществляются контакты между соседними клетками в виде плазмодесм.
Лигнин скрепляет
целлюлозные волокна и