Развитие и перспективы биохимии

Автор: Пользователь скрыл имя, 05 Октября 2011 в 16:35, реферат

Описание работы

Биохи́мия — наука о химическом составе живых клеток и организмов, химических процессах, лежащих в основе их жизнедеятельности.



Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечение , сыроварение , виноделие , выделка кож . Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений . Использование растений в пищу , для изготовления красок и тканей также приводило к попыткам понять свойства веществ растительного происхождения.

Работа содержит 1 файл

Биохимия.doc

— 1,001.00 Кб (Скачать)

Когда хромосомы  находятся в конъюгированном  состоянии, продолжается их дальнейшая спирализация. При этом отдельные хроматиды гомологичных хромосом переплетаются между собой. В последующем гомологичные хромосомы отталкиваются и несколько отходят одна от другой. В результате этого в местах переплетения хроматид может происходить их разрыв, и, как следствие, в процессе воссоединения этих разрывов гомологичные хромосомы обмениваются соответствующими участками. В результате хромосома, перешедшая к данному организму от отца, включает участок материнской хромосомы, и наоборот. Перекрест гомологичных хромосом, сопровождающийся обменом соответствующими участками между их хро-матидами, называется кроссинговером. После кроссинговера расходятся уже измененные хромосомы, т. е. с другим сочетанием генов. Являясь процессом закономерным, кроссинговер приводит каждый раз к обмену разными по величине участками и обеспечивает эффективную рекомбинацию материала хромосом в гаметах.

К концу профазы  хромосомы в бивалентах, сильно спирали-зуясь, укорачиваются. Как и в митозе, в конце профазы I разрушается  ядерная оболочка и начинает формироваться веретено деления.

В метафазе I завершается  формирование веретена деления. Его  нити прикрепляются к центромерам  хромосом, объединенных в биваленты  таким образом, что к каждой центромере идет лишь одна нить от одного из полюсов  клетки. В результате нити, связанные с центромерами гомологичных хромосом, устанавливают биваленты в плоскости экватора веретена деления.

В анафазе I гомологичные хромосомы, каждая из которых состоит  из двух хроматид, разделяются и  расходятся к полюсам клетки.

В телофазе I у  полюсов веретена деления собирается половинное число хромосом (гаплоидный набор). В этой короткой по продолжительности фазе восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочерние.

Таким образом, образование бивалентов при конъюгации гомологичных хромосом в профазе I мейоза создает условия для последующей редукции числа хромосом. Формирование их гаплоидного набора в гаметах обеспечивается расхождением в анафазе 1 не хроматид, как в митозе, а гомологичных хромосом, которые ранее были объединены в биваленты.

Второе  мейотическое деление следует сразу за первым и сходно с обычным митозом (поэтому его часто называют митозом мейоза), но в отличие от митоза клетки, вступающие в него, имеют гаплоидный набор хромосом.

Профаза II непродолжительна. В метафазе II снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центромерами прикрепляются к микротрубочкам веретена деления. В анафазе II осуществляется разделение их центромер, и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы растягиваются микротрубочками веретена деления к полюсам. В телофазе II завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются четыре гаплоидные дочерние клетки. Таким образом, в результате мейоза из одной диплоидной клетки образуются четыре клетки с гаплоидным набором хромосом.

Редукционное  деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении.

Иными словами, благодаря мейозу поддерживается определен-ное  и постоянное число хромосом во всех поколениях каждого вида растений, животных и грибов.

Другое важное значение мейоза заключается в обеспечении  чрезвычайного разнообразия генетического  состава гамет в результате как  кроссинговера, так и различного сочетания отцовских и материнских  хромосом при их расхождении в анафазе I. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Клеточная теория 

Клеточная теория была сформулирована в 1839 г. немецким зоологам и физиологом Т. Шванном. Согласно этой теории, всем организмам присуще клеточное строение. Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма — клетки. Как и всякое крупное научное обобщение, клеточная теория не возникла внезапно: ей предшествовали отдельные открытия различных исследователей.

Открытие клетки принадлежит английскому естествоиспытателю Р. Гуку, который в 1665 г. впервые рассмотрел тонкий срез пробки под микроскопом. На срезе было видно, что пробка имеет ячеистое строение, подобно пчелиным сотам. Эти ячейки Р. Гук назвал клетками. Вслед за Гуком клеточное строение растений подтвердили итальянский биолог и врач М. Мальпиги (1675) и английский ботаник Н. Грю (1682). Их внимание привлекли форма клеток и строение их оболочек. В результате было дано представление о клетках как о «мешочках» или «пузырьках», наполненных «питательным соком».

Значительный  вклад в изучение клетки внес голландский  натуралист, один из основоположников научной микроскопии, А. ван Ле-венгук, открывший в 1674 г. одноклеточные организмы — инфузории, амебы, бактерии. Он также впервые наблюдал животные клетки — эритроциты крови и сперматозоиды.

Дальнейшее усовершенствование микроскопа и интенсивные микроскопические исследования привели к установлению французским ученым Ш. Бриссо-Мирбе (1802, 1808) того факта, что все растительные организмы образованы тканями, которые состоят из клеток. Еще дальше в обобщениях пошел Ж. Б. Ламарк (1809), который распространил идею Бриссо-Мирбе о клеточном строении и на животные организмы.

В начале XIX в. предпринимаются  попытки изучения внутреннего содержимого  клетки. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клетки: главным в ее организации стали считать не клеточную стенку, а содержимое.

Наиболее близко к формулировке клеточной теории подошел немецкий ботаник М. Шлейден, который установил, что тело растений состоит из клеток.

Многочисленные  наблюдения относительно строения клетки, обобщение накопленных данных позволили  Т. Шванну в 1839 г. сделать ряд выводов, которые впоследствии назвали клеточной теорией. Ученый показал, что все живые организмы состоят из клеток, что клетки растений и животных принципиально схожи между собой.

Клеточная теория получила дальнейшее развитие в работах немецкого ученого Р. Вирхова (1858), который предположил, что клетки образуются из предшествующих материнских клеток. В 1874 г. русским ботаником И. Д. Чистяковым, а в 1875 г. польским ботаником Э. Страсбургером было открыто деление клетки — митоз, и, таким образом, подтвердилось предположение Р. Вирхова.

Создание клеточной  теории стало важнейшим событием в биологии, одним из решающих доказательств  единства живой природы. Клеточная  теория оказала значительное влияние  на развитие биологии как науки, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она позволила создать основы для понимания жизни, индивидуального развития организмов, для объяснения эволюционной связи между ними. Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки.

Клеточная теория включает следующие основные положения:

  1. Клетка — элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению й являющаяся единицей строения, функционирования и развития всех живых организмов.
  2. Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.
  3. Размножение клеток происходит путем деления исходной материнской клетки.
  4. В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными формами регуляции.
 

Неорганические вещества и их роль в клетке

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в  клетке определяется ее уникальными  химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Вода как компонент  биологических систем выполняет  следующие важнейшие функции:

  1. Вода—универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая часть химических реакций в клетке протекает в водных растворах. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.
  2. Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.
  3. Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.
  4. Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.
  5. Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.
  6. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
  7. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).
  8. Вода — составная часть смазывающих жидкостей (синовиальной — в суставах позвоночных, плевральной — в плевральной полости, перикардиальной — в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. Неорганические вещества в клетке, кроме воды, прецспавлевы минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg:+, NH4+) и анионы (С1 , Н2Р04 -, НР042- , НС03 -, NO32--, SO4 2- ) Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между  количеством катионов и анионов  на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной  кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота  и ее анионы формируют бикарбонатную  буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в  клетке, в процессах мышечного  сокращения, свертывании крови и др.

Ряд катионов и  анионов необходим дпясинтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеоти-дов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

Предмет, задачи и методы цитологии

Цитология (греч. kytos — ячейка, клетка) — наука о клетке.

Предметом ее изучения является клетка как структурная и функциональная единица жизни.

В задачи цитологии входит изучение строения и функционирования клеток, их химического состава, функций отдельных клеточных компонентов, познание процессов воспроизведения клеток, приспособления к условиям окружающей среды, исследование особенностей строения специализированных клеток, этапов становления их особых функций, развития специфических клеточных структур и др. Для решения этих задач в цитологии используются различные методы.

Основным  методом изучения клеток является световая микроскопия. Человеческий глаз обладает разрешающей способнос-тьюоколо 100мкм(1 мкм = 0,001 мм). Это означает, что две точки, расположенн ые на расстоянии менее чем 100 мкм друг от друга, кажутся одной расплывчатой точкой. Чтобы различить более мелкие структуры, применяют оптические приборы, в частности микроскопы. Разрешающая способность микроскопов составляет 0,13—0,20 мкм, т. е. примерно в тысячу раз превышает разрешающую способность человеческого глаза. С помощью световых микроскопов, в которых используется солнечный или искусственный свет, удается выявить многие детали внутреннего строения клетки — отдельные органеллы, клеточную оболочку. Создать световой микроскоп с большим разрешением невозможно, потому что разрешающая способность связана с длиной волны световых лучей, а не только с качеством увеличительных стекол.

Информация о работе Развитие и перспективы биохимии