Шпаргалка по "Биологии"

Автор: Пользователь скрыл имя, 27 Декабря 2011 в 13:21, шпаргалка

Описание работы

1. Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений. 4
2. История развития физиологии растений как науки. Роль отечественных учёных в развитии физиологии растений. 4
3. Химические вещества, входящие в состав растительных клеток. Ферменты, их основные свойства и физиологическое значение. 5
4. Клеточная оболочка, её структура и физиологические функции. Фазы роста клетки, этапы образования клеточной оболочки у растений. 6
5. Основные свойства цитоплазмы: вязкость, эластичность, подвижность, раздражимость. 7
6. Мембранный принцип организации поверхности цитоплазмы и органелл клетки. Функции мембран. Аппарат Гольджи, рибосомы, пероксисомы, лизосомы и митохондрии. 8

Работа содержит 1 файл

Ответы на экзаменационные вопросы по физиологии растений.doc

— 639.50 Кб (Скачать)

Другой  тип приспособлений связан с перестройками  в путях дыхания, необходимыми прежде всего для поддержания синтеза АТР, достаточного для сохранения жизнедеятельности растений. Одним из агротехнических мероприятий, повышающих устойчивость растений к избыточному водоснабжению, является обработка растений и замачивание семян в растворах хлорхолинхлорида. Положительное влияние хлорхолинхлорида отражается на развитии генеративных органов и завязывании зерновок в колосьях пшеницы при ее затоплении.

73. Морозоустойчивость  растений. Физико-химические  изменения при  замерзании. Повышение  морозоустойчивости  растений.

Морозоустойчивость — способность растений переносить температуру ниже О °С, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже —20 °С обычны для значительной части территории России. Ткани этих растений могут замерзать, однако растения не погибают. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5—1 °С/ч приводит к образованию  кристаллов льда прежде всего в межклеточниках и первоначально не вызывают гибели клеток. Однако последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки погибают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода. Основными причинами гибели клеток растений при низких отрицательных температурах и льдообразовании являются чрезмерное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоятельствами. Последствия воздействия низких отрицательных температур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выносить глубокие низкие температуры (до —196 °С). Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до —15...—20 "С.

Большой ущерб сельскому хозяйству наносят  кратковременные или длительные заморозки, отмечаемые в весенний и осенний периоды, а в северных широтах и летом. Заморозки — снижение температуры до небольших отрицательных величин, могут быть во время разных фаз развития конкретных растений. Наиболее опасны летние заморозки, в период наибольшего роста растений. Устойчивость к заморозкам обусловлена видом растения, фазой его развития, физиологическим состоянием, условиями минерального питания, увлажненностью, интенсивностью и продолжительностью заморозков, погодными условиями, предшествующими заморозкам.

Наиболее  устойчивы к заморозкам растения раннего срока посева (яровые хлеба, зернобобовые культуры), способные выдерживать в ранние фазы онтогенеза кратковременные весенние заморозки до —7...—10 °С. Растения позднего срока посева развиваются медленнее и не всегда успевают подготовиться к низким температурам. Существенную роль в устойчивости к заморозкам играет фаза развития растений. Особенно опасны заморозки в фазе цветение — начало плодоношения. Устойчивость растений зависит от образования при заморозках льда в клетках и межклеточниках. Если лед не образуется, то вероятность восстановления растением нормального течения функций возрастает. Поэтому первостепенное значение имеет возможность быстрого транспорта свободной воды из клеток в межклеточники, что определяется высокой проницаемостью мембран в условиях заморозков, защищают от заморозков дымовые завесы и укрытие растений пленкой, дождевание растений перед заморозками или весенний полив. Для вертикального перемещения воздуха около плодовых деревьев используют вентиляторы. 

Прекращение роста и переход в состояние покоя — необходимые условия прохождения первой фазы закаливания.

Первая  фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влажности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5—2 °С за 6—9 дней, древесные — за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет  в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кислот, снижается точка замерзания цитоплазмы, отмечается некоторое уменьшение внутриклеточной воды. К концу первой фазы закаливания все зимующие растения переходят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются.

Вторая  фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже 0 "С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до —10...—20 °С и ниже со скоростью 2—3 °С в сутки, что приводит к частичной потере воды клетками, освобождению клеток тканей от избыточного содержания воды или витрификации, (переходу воды в стеклообразное состояние). Явление витрификации воды в растительных клетках наступает при резком охлаждении (ниже —20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность. Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной температуре. Действующими факторами второй фазы закаливания являются обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая температура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестройка белков цитоплазмы, накапливаются низкомолекулярные водорастворимые белки, более устойчивые к обезвоживанию, синтезируются специфические белки.

Первая  фаза закаливания повышает морозоустойчивость растений с —5 до —12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до —18...—20 "С, у ржи —до —20...—25 °С. Растения, находящиеся в глубоком органическом покое, отличаются способностью к закаливанию и выдерживают промораживание до —195 °С.

74. Холодоустойчивость  растений. Способы  повышения холодоустойчивости.

Под холодостойкостью понимают способность растений переносить положительные температуры несколько выше О °С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отмирают при температурах от 0 до 10 "С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низкие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболеваниям и вообще не происходит заметных повреждений растений. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода. Повреждение растений холодом сопровождается потерей ими тургора и изменением окраски (из-за разрушения хлорофилла), что является следствием нарушения транспорта воды к транспирирующим органам. Кроме того, наблюдаются значительные нарушения физиологических функций, которые связаны с нарушением обмена нуклеиновых кислот и белков. Нарушается цепь ДНК -» РНК -» белок -» признак. Процессы распада преобладают над процессами синтеза, происходят нарушение проницаемости цитоплазмы (повышение ее вязкости), изменения в системе коллоидов, снижается (падает) осевой градиент потенциалов покоя (ПП), активный транспорт веществ против электрохимического градиента.

Холодостойкость некоторых теплолюбивых растений можно повысить закаливанием прорастающих семян и рассады, которое стимулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) переменных температурах: от 0 до 5 "С и при 15—20 "С. Холодостойкость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов. Повысить холодостойкость растений можно прививкой теплолюбивых растений (арбуз, дыня) на более холодоустойчивые подвои (тыква).

75. Солеустойчивость  растений. Типы галофитов.  Способы повышения  устойчивости.

У растений выработались различные приспособительные  структуры, определяющие возможность  произрастания их в засоленной среде. Это группа галофитных растений, отличающихся друг от друга по своим анатомическим  и физиологическим свойствам. Эугалофиты. Это «соленакапливающие» растения с мясистыми стеблями и листьями. Клетки данных растений отличаются очень высоким осмотическим потенциалом, они легко поглощают различные соли из почвы, накапливая их в вакуолях. Таким образом, осмотический потенциал этих растений всегда больше, чем осмотический потенциал почвенного раствора.

Криногалофиты. Это «солевыделяющие» растения. К ним относятся кермек, тамариск и др. Протоплазма этих растений имеет высокую проницаемость для солей, она как бы фильтрует соли, пропуская их через себя. Содержание солей в самих клетках при этом постоянное. Растения данной группы имеют специальные секретирующие клетки на листьях, в которых и накапливаются соли. Когда эти клетки полностью заполняются солями, они лопаются и соль остается на поверхности листа. На месте погибших клеток вырастают новые.

Гликогалофиты. Это «соленепроницаемые» растения. К ним относятся хорошо известные полынь и лебеда. Цитоплазма клеток у этих растений плохо проницаема для солей. Высокое осмотическое давление клеточного сока обусловлено не высокой концентрацией солей, как у первых двух групп, а наличием большого количества органических соединений, особенно углеводов, которые предотвращают избыточное поглощение и накопление солей этими растениями.

Есть  группы растений (олигогалофиты), которые растут при малом содержании солей в среде. Мезогалофиты довольствуются средним содержанием солей.

Гликофиты — растения пресных местообитаний, обладающие сравнительно ограниченной приспособленностью к засолению в процессе индивидуального развития.

В настоящее  время можно применять метод  солевой закалки, разработанный  П. А. Генкелем. Автор предлагает проводить  предпосевную обработку семян некоторых  культур растворами солей — NaCl, МgSO4 и Na2СО3 соответственно для повышения устойчивости к действию хлоридного, сульфатного и содового засоления. Можно выделить и такие методы, как обработка растений физиологически активными веществами (ретардантами, антитранспирантами, ауксинами, гиббереллинами и др.); изменение условий минерального питания; отбор солеустойчивых растений, проводимый методами селекции, включая мутагенез и генную инженерию. одним из наиболее реальных способов снижения токсического действия высоких концентраций минеральных солей на растения является подбор наилучших соотношений между ионами Са, Na, К, нитратов и др.

Информация о работе Шпаргалка по "Биологии"