Агрохимия

Автор: Пользователь скрыл имя, 12 Октября 2011 в 00:18, доклад

Описание работы

Агрохимия, наука о химических и биохимических процессах в растениях и среде их обитанияю, а также о способах химического воздействия на эти процессы с целью повышения плодородия почвы и урожая с.-х. культур. Агрохимия одна из наук, входящих в агрохимию. Отдельные её разделы нразрывно связаны с физиологией растений, химией, биохимией, почвоведением, микробирлогией, земледелием и растеневодством.

Работа содержит 1 файл

биохимия.doc

— 179.50 Кб (Скачать)

Термодинамические показатели состояния воды: активность воды, химический и водный потенциал. Составляющие водного потенциала клетки: осмотический, матричный потенциал, потенциал давления. Градиент водного потенциала как движущая сила поступления и передвижения воды. Основные закономерности поглощения воды клеткой: взаимосвязь между изменениями водного потенциала клетки, водного потенциала раствора и водного потенциала давления. Аквапорины (белки водных каналов), их структура, принцип работы. Аквапорины плазмалеммы и тонопласта, их роль в поддержании водного баланса воды. 

Транспорт воды по растению. Корень как основной орган  поглощения воды. Механизм радиального  транспорта воды в корне. Роль ризодермы и эндодермы в этом процессе. Поступление воды в сосуды ксилемы. Ксилема — основная транспортная магистраль движения водного тока в системе «почва – растение – атмосфера». Характеристика «нижнего» и «верхнего» двигателей водного тока. Корневое давление. 

Выделение воды растением. Гуттация, «плач» растений. Транспирация и ее роль в жизни  растений. Количественные показатели транспирации: интенсивность, продуктивность, транспирационный коэффициент. Устьичная  и кутикулярная транспирация. Строение устьиц у двудольных и однодольных растений, механизм устьичных движений. Влияние внешних факторов (свет, температура, влажность воздуха, почвы) на интенсивность транспирации. Суточные колебания транспирации. Регуляторная роль устьиц в водо- и газообмене. 

Экология водообмена растений. Особенности водообмена у  растений разных экологических групп (ксерофитов, мезофитов, гигрофитов, галофитов). 

6. Минеральное  питание 

Потребность растений в элементах минерального питания. Содержание и соотношение минеральных элементов в почве и растениях, концентрирование элементов в тканях растения. Функциональная классификация элементов минерального питания. 

Корень как  орган поглощения минеральных элементов, специфических синтезов с их участием и транспорта. Рост корня как основа поступления элементов минерального питания. Значение зон роста корня в этом процессе. Система взаимодействия “корень - почва”. Роль микоризы. 

Поглощение ионов  и их передвижение в корне. Клеточная  стенка как фаза для движения ионов. Понятие свободного пространства (СП): водное и доннановское СП, оценка их размеров. Механизмы поступления ионов в СП и значение этого этапа поглощения. 

Транспорт ионов  через мембраны; движущие силы переноса ионов. Пассивный и активный транспорт  ионов. Уравнение Нернста. 

Градиент электрохимического потенциала ионов водорода - энергетическая основа активного переноса ионов  через плазмалемму. Различия энергетики активного транспорта ионов растительной и животной клеток. Н-АТФаза плазмалеммы, ее структура, функционирование и регулирование. 14-3-3 белки. Другие ионные насосы, действующие на плазмалемме. Вторичный активный транспорт ионов. Белки-переносчики ионов (портеры). Кинетический подход и теория переносчиков. Уравнения Михаэлиса-Ментен; использование Vmax и Кm для характеристики транспортных систем. Ионные каналы растений; общая характеристика их структуры, функционирования и регуляции. 

Особенности транспортных систем мембран вакуоли и ЭР. Н-АТФаза V-типа, пирофосфотаза. 

Модели поступления  ионов в корень, транспорт минеральных веществ в ксилему. Апопластный и симпластный путь. Роль плазмодесм и ЭР. Взаимодействие и регуляция систем транспорта ионов из среды в корень и загрузки ксилемы. Специфика радиального транспорта минеральных элементов. Синтетическая функция корня. Связь поступления и превращения ионов с процессами дыхания. Регуляция поступления ионов на уровне целого растения. 

6.1. Роль макроэлементов. 

Азот. Особенности  азотного обмена растений. Источники  азота для растений. Минеральные  формы азота, используемые растениями. Физиологические особенности поступления и включения в обмен аммиачного и нитратного азота. Характеристика систем транспорта нитрата и аммония. Видовая специфика усвоения разных форм азота 

Симбиотическая  фиксация молекулярного азота: механизмы восстановления, источники энергии и восстановители. Характеристика и функционирование нитрогеназы. 

Восстановление  нитратов растениями. Нитрат- и нитритредуктаза: структура ферментов, локализация, регуляция активности и синтеза. Конститутивная и индуцибельная нитрогеназа. Этапы восстановления окисленного азота и их регуляция в клетке in vivo. 

Альтернативные  пути усвоения аммонийного азота; локализация  реакций в клетке и характеристика ферментов (глутаматдегидрогеназы, глутаминсинтетазы, глутаматсинтазы). Ассимиляция азота в хлоропласте, связь с фотосинтезом. Пути усвоения восстановленного азота у бобовых. Уреиды. 

Запасные и  транспортные формы минерального и  органического азота в зависимости  от источника азотного питания. Накопление нитрата в тканях и его пулы. Круговорот азота по растению, реутилизация азота. 

Сера. Поступление  серы в растение, реакции восстановления и ассимиляции; аденозинфосфосульфат (АФС) фосфоаденозинфосфосульфат (ФАФС). Основные соединения серы в клетке, участие в окислительно- восстановительных реакциях. Глутатион, тиоферредоксин, фитохелатины, их функции у растений. Органические соединения окисленной серы. 

Фосфор. Формы  минерального фосфора в тканях, их содержание и функции. Особенности  поступления фосфора и транспорта его соединений в растении. Формы минерального фосфора в тканях, их функции. Основные фосфорсодержащие компоненты клетки, их роль. Запасные формы фосфора. Компартментация соединений фосфора. Роль фосфора в регулировании активности ферментов. 

Калий. Содержание и распределение калия в клетке, тканях и органах растения; его циркуляция и реутилизация, характеристика систем транспорта К+ их функции в растении. Роль К+ в поддержании потенциала на мембранах. Калий и гомеостаз внутриклеточной и тканевой среды (ионный баланс, рН, осморегуляция, гидратация и конформация макромолекул). Роль калия в регуляции ферментных систем. 

Кальций. Накопление, формы соединений, особенности поступления  и перемещения Ca2+ по растению. Концентрация и распределение Ca + в структурах клетки. Сигнальная роль Ca2+. Характеристика мембранных систем транспорта Ca2+, особенности их регуляции и роль в формировании Ca2+-сигнала. Структурная роль кальция в клеточной стенке. 

Магний. Содержание и соединения магния в тканях растений. Запасные формы Mg2+, его реутилизация и перераспределение в растении. Значение связи Mg2+с аденозинфосфатами и фосфорилированными сахарами. Функции магния в фотосинтезе. Магний как активатор ферментных систем; роль в синтезе аминоацил-тРНК и в функционировании рибосом. 

6.2. Микроэлементы. 

Свойства тяжелых  металлов, определяющие их роль в ЭТЦ  фотосинтеза и дыхания и других редокс- реакциях. 

Железо: доступность  в почве, валентность поглощаемой  формы, роль микоризы. Особенности поступления  железа у двудольных и однодольных  растений. Соединения железа; распределение по компартментам клетки и в растении. Комплексы железа в белках редокс- цепей и других ферментах. 

Медь: Содержание и распределение в клетке и  тканях. Участие в окислительно-восстановительных  процессах дыхания и фотосинтеза. Функции цитозольных оксидаз (аскорбат-, фенол- и диаминоксидаз). 

Марганец: Активируемые им ферментные системы, его специфичность, как кофактора. Роль Мn2+ в функционировании ФС-2. 

Молибден: Потребность  в элементе; его значение для процессов  утилизации азота среды. Моптерин и функционирование нитрогеназы и нитратредуктазы. 

Цинк: Структурная  роль в поддержании ферментной активности и при синтезе белка. Zn-содержащие ферменты: карбоангидраза, супероксиддисмутаза (СОД). 

Бор: компартментация  в клетке; формы соединений. Механизмы участия в регуляции физиологических процессов и метаболизма. Структурная роль в клеточной стенке. 

Нарушения в  метаболизме растений при недостатке микроэлементов. 

Функции «полезных» элементов: натрий, хлор, кремний, кобальт. 

7. Дальний транспорт  и круговорот веществ в растении 

Транслокация  веществ из листьев в другие органы: флоэмные ситовидные элементы. Состав транслоцируемых веществ (сахара, аминокислоты, гормоны, неорганические ионы и др.). Передвижение фотоассимилятов из мезофилла к сосудам флоэмы по апопласту и симпласту. Механизмы загрузки флоэмы из апопласта и симпласта. Роль сопровождающих клеток. Тип загрузки флоэмы у растений различных систематических групп и ее зависимость от климатических условий. Механизм передвижения веществ по флоэме. Модель потока воды под давлением. Поры ситовидной пластинки как открытые каналы. Скорость передвижения веществ по флоэме; их выгрузка из ситовидных элементов. Восходящий транспорт веществ по ксилеме. Состав ксилемного эксудата. Взаимосвязь транспорта воды и растворенных веществ по ксилеме. Скорости транспорта воды и отдельных веществ. Взаимодействие флоэмных и ксилемных потоков азотистых веществ и ионов. Круговорот и реутилизация минеральных веществ в растении. Функциональная роль этих физиологических процессов. 

8. Рост и развитие  растений 

Определение понятий  «рост» и «развитие» растений. Проблема роста и развития на организменном, органном, клеточном и молекулярном уровнях. Существование организма  как развертывание во времени  генетической программы; воздействие внешних факторов. 

Общие закономерности роста. Показатели роста, S-образный характер кривой роста, его фазы. Компоненты «классического» анализа роста  и математический анализ процесса. Типы роста у растений. Организация  меристем корня и стебля. Рост и деятельность меристем. Клеточные основы роста. Рост растений и среда. Влияние температуры, света, воды, газового состава атмосферы, элементов минерального питания на ростовые процессы. 

Жизненный цикл высших растений. Основные этапы онтогенеза (эмбриональный, ювенильный, репродуктивный, зрелости, старения), их морфологические, физиологические и метаболические особенности. Состояние покоя у растений. Типы покоя и их значение для жизнедеятельности растений. 

Механизмы морфогенеза  растений. Полярность. Индукция генетических программ, морфогенетические градиенты и ориентация клеток в пространстве. Целостность и коррелятивное взаимодействие органов. Регенерация. 

Гормональная  регуляция роста и развития растений. 

Ауксины. Биосинтез, образование конъюгатов, деградация ауксинов. Активный транспорт ауксинов в растениях. Физиологические ответы на ауксины: аттрагирующий эффект, растяжение клеток и тропизмы, дифференцировка клеток под действием ауксинов, апикальное доминирование, активизация делений клеток камбия, ризогенез. Ауксин как гормон стеблевого апекса. 

Цитокинины. Биосинтез, образование конъюгатов, деградация цитокининов. Физиологическое действие: аттрагирующий эффект, стимуляция клеточных  делений, дифференцировка под действием  цитокининов, снятие апикального доминирования с боковых почек. Цитокинин как гормон корневого апекса. 

Взаимодействие  ауксинов и цитокининов. Понятие  об антагонизме и синергизме. Гормональный баланс в растении. Культура in vitro как  модель для изучения гормонального баланса. Поддержание гормонального баланса за счет регенерации точек синтеза ауксинов и цитокининов. Бактерии, использующие нарушение гормонального баланса между ауксинами и цито-кининами (Agrobacterium tumefaciens, A. rhizogenes). 

Гиббереллины. Пути биосинтеза и многообразие гиббереллинов. Образование конъюгатов и деградация. Физиологическое действие гиббереллинов: растяжение клеток и активизация интеркалярных меристем, образование цветоносов, прерывание покоя и стимуляция ростовых процессов. Эндогенный уровень гиббереллинов и длина дня. Гиббереллины как гормоны листьев. Карликовость, вызванная нарушениями синтеза гиббереллинов. Взаимодействие с другими гормонами. 

Абсцизовая кислота. Пути биосинтеза АБК в растениях  и в грибах, ее метаболизм. Физиологическое действие: остановка роста, подготовка к состоянию покоя. Активизация синтеза запасных веществ. АБК как гормон абиотического стресса. Стратегия ответа на засуху, понижение температуры, засоление. Роль АБК в индукции защитных процессов (синтез осмопротекторов, полиаминов, белков-шапиронинов; закрывание устьиц; листопад, вызванный дефицитом воды; созревание сухих плодов и семян). Взаимодействие АБК и гиббереллинов в процессах регуляции покоя. 

Информация о работе Агрохимия