Автор: Пользователь скрыл имя, 15 Мая 2013 в 13:48, курсовая работа
Цель работы: Закрепить теоретические знания и приобрести навыки практической работы ветеринарно-санитарного врача по ветеринарно-санитарному контролю получения доброкачественного молока на ферме.
Задачи
1) оберегать людей от болезней, которые могут передаваться через молочные продукты;
2) обеспечивать высокое санитарное качество молока и молочных продуктов в процессе их первичной обработки и хранения;
3) контролировать санитарное состояние фермы и проводить контроль за личной гигиеной работников фермы.
д) морфология и лейкоцитная проба.[2]
Пищевое значение
молока и молокообразование. Молоко
представляет собой сложную биологическую
жидкость, которая образуется в молочной
железе самок млекопитающих и
обладает высокой пищевой ценностью,
иммунологическими и
Белки молока в организме человека играют роль пластического материала для построения новых клеток и тканей, образования биологически активных веществ — ферментов и гормонов. Высокая биологическая ценность белков молока обусловлена их составом, сбалансированностью аминокислот, хорошей переваримостью и усвояемостью организмом (96-98%). Незаменимые аминокислоты — метионин, триптофан, лейцин, изолейцин, валин и фенилаланин — содержатся в белке молока в значительно больших количествах, чем в белках мяса, рыбы и растительных продуктов.
Биологическая ценность молочного жира обусловлена содержанием в нем ненасыщенных и насыщенных жирных кислот, наличием фосфолипидов. Биологически важно наличие в молочном жире полиненасыщенных кислот — линолевой, линоленовой, арахидоновой, играющих большую роль в процессах обмена веществ. Эти кислоты участвуют во внутриклеточном обмене, входят в состав нервных клеток, регулируют уровень холестерина в крови, повышают эластичность сосудов, способствуют синтезу простогландинов. Липиды молока — носители жирорастворимых витаминов А, Д, Е, К, которых мало в других жирах. Хорошей усвояемости молочного жира (98%) способствует и низкая температура его плавления (28-36° С).
Лактоза — хороший источник энергии для работы сердца, печени, почек, входит в состав клеток, витаминов. Разлагаясь в кишечнике до молочной кислоты, она способствует жизнедеятельности микрофлоры, тормозящей развитие гнилостных процессов. Организмом человека лактоза усваивается на 98%.
Минеральные вещества молока, поступающие в организм человека, поддерживают кислотно-щелочное равновесие в тканях и осмотическое давление в крови, способствуют нормальной жизнедеятельности организма. Молоко — источник жирорастворимых и водорастворимых витаминов. В молоке содержатся биологически активные вещества — гормоны, ферменты, простогландины, бактериостатические и бактерицидные вещества (лизоцим, иммуноглобулины, лактенины, лактоферрин и др.), повышающие устойчивость организма к инфекционным болезням.
Велика роль в питании человека и молочных продуктов — кисломолочных, масла, сыров и др. Кисломолочные продукты (кефир, творог, катык, сметана, кумыс, ацидофильное молоко и др.) наряду с высокой пищевой ценностью обладают диетическими и лечебными свойствами (улучшают пищеварение, оказывают терапевтическое действие при желудочно-кишечных заболеваниях, хроническом бронхите, туберкулезе, малокровии, заболеваниях печени, почек, сердечно-сосудистой системы). Масло и сыр обладают высокой пищевой ценностью, обусловленной их химическим составом и хорошей усвояемостью организмом.
Молокообразование. Молоко синтезируется клетками молочной железы самок из составных частей крови. Основные компоненты молока — жир, казеин, лактоза — синтезируются в результате перестройки химических веществ, поступающих с кровью. Избирательно из крови в молоко переходят минеральные вещества и, видимо, без изменений — витамины, гормоны, ферменты, некоторые белки и пигменты.
В клетках молочной железы из аминокислот крови образуются казеин, а- лактальбумин, лактоглобулин. Альбумин, иммуноглобулины переходят в молоко из крови. Основной источник аминокислот для синтеза белков молока — свободные аминокислоты крови. В процессе синтеза белков принимают участие ДНК, РНК, АТФ, ГТФ и ферменты. Молочный жир, фосфолипиды, стерины и другие липиды молока синтезируются в клетках молочной железы. Жирные кислоты поступают в молочную железу в составе липидов крови или синтезируются ее клетками. Из липидов крови образуются главным образом высокомолекулярные жирные кислоты. Низкомолекулярные жирные кислоты образуются в клетках молочной железы. Их предшественниками являются ацетат и оксибутират, содержащиеся в крови животных. Лактоза синтезируется в клетках молочной железы из D-глюкозы и УДФ-галактозы под действием фермента лактосинтазы. Выведение компонентов молока из клеток молочной железы осуществляется путем активной диффузии через мембраны клеток без повреждения или с частичным нарушением их целостности. Секреторная деятельность молочной железы находится в неразрывной связи с функцией остальных систем и органов животного — нервной, пищеварительной, дыхательной, кровеносной, эндокринной и др. Главный регулирующий центр образования и выведения молока — центральная нервная система. Регуляция осуществляется нейрогуморальным путем — через нервно-рефлекторные связи и посредством гормонов эндокринных желез.
Рефлекс выведения молока осуществляется в результате взаимодействия нервной, эндокринной и сосудистой систем.
Молоко состоит более чем из 300 компонентов, основные из которых вода, белки, жир, лактоза, микроэлементы, витамины, ферменты, гормоны и др.
Вода — среда, в которой растворены или распределены все остальные компоненты молока, образующие устойчивую коллоидную систему, позволяющую подвергать молоко различным технологическим процессам. 95-97% воды находится в свободном состоянии. Эту воду можно удалить при нагревании молока. В ней растворены лактоза, минеральные вещества, кислоты. Кроме того, различают воду связанную (2,0-3,5%), набухания и кристаллизационную. Способностью связывать воду обладают белковые вещества, полисахариды, фосфатиды, так как они имеют гидрофильные группы. Вода набухания содержится в лиофильных коллоидах с мицеллярным строением (в белках). Кристаллизационная вода связана с молекулами лактозы.
После высушивания навески молока при температуре 103-105°С до постоянной массы остается сухое вещество (сухой остаток), в состав которого входят все компоненты молока, за исключением воды. Компоненты сухого вещества обусловливают пищевую ценность молока и его технологические свойства при производстве молочных продуктов.
Белки. Содержание белков в молоке коров в среднем составляет 3,3%. 78-85% белков представлены казеином, остальная часть — сывороточные белки, к которым относятся а - лактальбумин, Р - лактоглобулин, альбумин, иммуноглобулины, протеозопептоны и лактоферрин. К белкам молока относятся также ферменты, некоторые гормоны (пролактин), белки оболочек жировых шариков и белковые вещества микробных клеток.
Казеин в молоке находится в количестве 2,7% в коллоидном состоянии. Он является гетерогенным белком и в зависимости от содержания фосфора, серы и способности к свертыванию кислотой или сычужным ферментом его можно разделить на альфа-, бета-, гамма- и каппа фракции. Нефракционный казеин содержит углерода 53%, водорода - 7,1, азота - 15,6, кислорода - 22,6, серы - 0,8, фосфора - 0,9%. Гамма-формат казеина не изменяется под действием сычужного фермента, тогда как альфа- и бета-формы осаждаются с образованием сгустка (параказеина). Каппа-фракция изучена слабо.
При рН свежего молока 6,8 казеин имеет отрицательный заряд. Равенство положительных и отрицательных зарядов (изоэлектрическое состояние) наступает в кислой среде при рН 4,6-4,7. Он относится к фосфопротеинам (содержит фосфор) и имеет свободные аминные и карбоксильные группы. Карбоксильных групп в казеине почти в 2 раза больше, чем аминных, поэтому в нем кислотные свойства преобладают над основными. В молоке казеин соединен с кальциевыми солями и образует казеинфосфаткальциевый комплекс.
Казеин обладает амфотерными свойствами — кислотными и щелочными. Свободные аминогруппы казеина взаимодействуют с альдегидами, например, с формальдегидом, на чем основано определение содержания белков в молоке методом формольного титрования. Казеин можно выделить и воздействием слабых кислот. В этом случае казеинфосфаткальциевый комплекс распадается на чистый казеин и соль кислоты, в реакцию с которой он вступил. Такая реакция наблюдается при естественном скисании молока, когда под действием молочнокислых микроорганизмов происходит разложение лактозы с образованием молочной кислоты.
Сывороточные белки. После осаждения казеина из обезжиренного молока сычужным ферментом или кислотой в сыворотке остается 0,5-0,8% белков. Основными из них являются лактоглобулин, о - лактальбумин, альбумин сыворотки крови, иммуноглобулины, протеозопептоны, лактоферрин. Сывороточные белки по содержанию незаменимых аминокислот биологически более полноценны.
Р - лактоглобулин составляет около 50% всех белков сыворотки. При пастеризации он подвергается денатурации. Биологическая роль его не выяснена. а- лактальбумина в молоке 2-5% от общего количества его белков. Он тонкодисперсирован, не коагулирует в изоэлектрической точке в силу большой гидратированности не свертывается под действием сычужного фермента, термостабилен. Необходим для синтеза лактозы из галактозы и глюкозы.
Иммунные глобулины составляют 1,9-3,3% общего количества белков молока. В молозиве их количество повышается и достигает 90% всех сывороточных белков. Они выполняют функции антител. Из молока коров выделено 3 группы иммуноглобулинов: G, А и М. В количественном отношении преобладают иммуноглобулины группы G.
Протеозопептоны составляют около 24% сывороточных белков и 2-6% всех белков молока, относятся к наиболее термостабильным сывороточным белкам. Они не осаждаются при нагревании до 100°С в течение 20 мин. Количество их увеличивается в процессе хранения молока при низких плюсовых температурах (3-5°С). Биологическая роль этих белков не выяснена.
Лактоферрин — красный железосвязывающий белок, по свойствам напоминающий трансферрин крови. Обладает бактериостатическим действием. В молоке коров его содержится 0,1-0,4 мг/мл, в молозиве - 1-6, мг/мл.
Небелковые азотистые вещества молока представляют собой промежуточные и конечные продукты азотистого обмена и поступают в молоко из крови. К ним относятся пептиды, аминокислоты, мочевина, аммиак, креатин, креатинин, оротовая, мочевая и гишуровая кислоты. Они составляют около 5% всего содержания азота в молоке.
Ферменты. Из молока здоровых животных выделено более 20 истинных ферментов. Одни из них секретируются в клетках молочной железы (щелочная фосфатаза, лактосинтаза, лизоцим), другие переходят в молоко из крови животных (альдолаза, каталаза, протеиназа). Кроме истинных, в молоке присутствуют ферменты, вырабатываемые микрофлорой молока. Ферменты, находящиеся в молоке и молочных продуктах, имеют большое практическое значение. На действии ферментов классов оксидоредуктаз, гидролаз, трансфераз и других основано производство кисломолочных продуктов и сыров. Протеолитические и липолитические ферменты вызывают изменения, приводящие к снижению пищевой ценности и возникновению пороков молока и молочных продуктов. По активности некоторых ферментов можно судить о санитарно-гигиеническом состоянии сырого молока и эффективности его пастеризации. К оксидоредуктазам относят редуктазы, оксидазы, пероксидазу и каталазу.
Редуктазы накапливаются в сыром молоке при размножении в нем бактерий. Поэтому бактериальную обсемененность молока можно определить по продолжительности восстановления добавленного к молоку резазурина или метиленового голубого. Оксидазы вырабатываются клетками молочной железы (ксантиноксидаза) и микрофлорой молока (оксидазы аминокислот). Ксантиноксидаза катализирует окисление пуриновых оснований — гипоксантина и ксантина до мочевой кислоты, а альдегидов — до карбоновых кислот. Пероксидаза синтезируется клетками молочной железы и частично освобождается из лейкоцитов, обладает антибактериальными свойствами; инактивируется при температуре около 80°С, что используют в молочной промышленности для контроля эффективности пастеризации молока.
Каталаза переходит в молоко из клеток молочной железы, а также вырабатывается микрофлорой молока и лейкоцитами. В молоке здоровых животных каталазы содержится мало, а в молозиве и молоке больных животных ее количество резко увеличивается. В связи с этим определение активности каталазы используют в качестве метода обнаружения молока, полученного от больных животных (мастит и др.).
Молочный жир — производное спирта глицерина и жирных кислот. Среднее содержание его в молоке составляет 3,8%. В молочном жире обнаружено около 150 жирных кислот с числом атомов углерода.
Таблица 1. Жирные кислоты молочного жира
Насыщенные |
Ненасыщенные | ||||
Кислоты |
Содержание в жире, % |
Температура плавления, °С |
Кислоты |
Содержание в жире, % |
Температура плавления,0 С |
Масляная Капроновая Карпиловая Каприновая Лауриновая Миристиновая Пальмитиновая Стеариновая Арахиновая |
2,4-5,0 1,0-3,5 0,4-1,7 0,8-3,6 0,8-3,9 7,6- 13,2 20,0-36,0 5,5 - 13,7 0,3-1,3 |
-7,9 -3,4 16,7 31,6 44,2 53,9 62,9 69,6 75,3 |
Капролеиновая Лауролеиновая Миристолеиновая Пальм итоле-иновая Олеиновая Линолевая Линоленовая Арахидоновая |
0,1-0,4 0,2-0,4 1,5-3,5 1,5-5,6 16,7-37,6 1,0-5,2 0,1-2,1 0,1-0,5 |
12,0 15,0 18,5 0,5 13,4 5,0 11,0 49,5 |
Витамины содержатся в молоке в различных количествах, что обусловлено поступлением их в организм коровы с кормом, интенсивностью синтеза микрофлорой рубца и степенью разрушения при обработке и хранении молока. Среднее содержание витаминов в 100 г молока составляет (мг): жирорастворимых - А - 0,02-0,2, Д -0,002, Е - 0,06; К - 0,032; водорастворимых - Вх- 0,05; В2- 0,2; В„- 0,1-0,15; В12- 0,1- 0,3, РР - 0,05-0,4, В3- 0,28-0,36, С - 0,5-2,8, Н - 0,00001-0,00003.
Информация о работе Санитарно-гигиенические условия получения молока на ферме