Автор: Пользователь скрыл имя, 27 Февраля 2012 в 10:17, курсовая работа
На данный момент делается
упор на более надежное оборудование, для увеличения межремонтного периода,
и как следствие из этого снижение затрат на подъем жидкости. Этого можно
добиться, применяя центробежные УЭЦН вместо ШСН, так как центробежные
насосы имеют большой межремонтный период.
|ВВЕДЕНИЕ |7 |
|1.АНАЛИЗ СУЩЕСТВУЮЩИХ СХЕМ И КОНСТРУКЦИЙ. |8 |
|1.1.Назначение и технические данные ЭЦН. |8 |
|1.1.1.Историческая справка о развитии способа добычи. |8 |
|1.1.2.Состав и комплектность УЭЦН. |9 |
|1.1.3.Технические характеристики ПЭД. |14 |
|1.1.4.Основные технические данные кабеля. |15 |
|1.2. Краткий обзор отечественных схем и установок. |16 |
|1.2.1.Общие сведения. |16 |
|1.2.2.Погружной центробежный насос. |17 |
|1.2.3.Погружные электродвигатели. |18 |
|1.2.4.Гидрозащита электродвигателя. |18 |
|1.3.Краткий обзор зарубежных схем и установок. |19 |
|1.4. Анализ работы УЭЦН. |22 |
|1.4.1.Анализ фонда скважин. |22 |
|1.4.2.Анализ фонда ЭЦН. |22 |
|1.4.3.По подаче. |22 |
|1.4.4.По напору. |23 |
|1.5.Краткая характеристика скважин. |24 |
|1.6.Анализ неисправностей ЭЦН. |24 |
|1.7.Анализ аварийности фонда УЭЦН. |26 |
|2.ПАТЕНТНАЯ ПРОРАБОТКА. |28 |
|2.1.Патентная проработка. |28 |
|2.2.Обоснование выбранного прототипа. |30 |
|2.3.Суть модернизации. |31 |
|3. РАСЧЕТНАЯ ЧАСТЬ. |32 |
|3.1. Расчет ступени ЭЦН. |32 |
|3.1.1. Расчет рабочего колеса. |32 |
|3.1.2. Расчет направляющего аппарата. |35 |
|3.2.Проверочный расчет шпоночного соединения. |36 |
|3.3.Проверочный расчет шлицевого соединения. |38 |
|3.4.Расчет вала ЭЦН. |39 |
|3.5.Прочностной расчет |44 |
|3.5.1.Прочностной расчет корпуса насоса. |44 |
|3.5.2.Прочностной расчет винтов страховочной муфты. |45 |
|3.5.3.Прочностной расчет корпуса полумуфты. |45 |
|4.ЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ |47 |
|5.БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА. |53 |
|6.Литература. |63 |
|7. Приложение 1 |64 |
|8.Приложение 2 |65 |
|9.Приложение 3 |66 |
|10.Приложение 4 |67 |
|11. Приложение 5. |68 |
где, f-фаска на шлицах;
l-длина контактирующей поверхности шлицевого соединения;
f=0,003 м
l=0,04 м
Асм.= (0,017-0,0137 – 2*0,0003)*0,04
2
Асм.=0,000042 м2
(3.25)
где, Nдв.- мощность двигателя;
n - число оборотов вала;
Nдв.=20 КВт=20000Вт
n=2840 об/мин=47,33 об/сек
Т=20000
47,33
Т=422,6 Н*м
?см.= 422,6
0,75*6*0,000042**0,007675
?см=291308000 Н/м
?см=291,308 Мпа.
Вал насоса изготовлен из высоколегированной стали.
[?см]вала=500-1100 МПа.
Следовательно, шлицевое соединение, рассчитанное нами и проверенное на
смятие удовлетворяет нашему насосу.
3.4.Расчет вала ЭЦН
Различают валы прямые, коленчатые и гибкие. Наибольшее распространение
имеют прямые валы. Коленчатые валы применяют в поршневых машинах. Гибкие
валы допускают передачу вращения при больших перегибах. По конструкции
различают валы и оси гладкие, фанонные или ступенчатые, а так же сплошные и
полые. Образование ступеней на валу связано с закреплением деталей или
самого вала в осевом направлении, а также с возможностью монтажа детали при
подсадках с натягом. Полые валы изготавливают для уменьшения массы или в
тех случаях, когда через вал пропускают другую деталь, подводят масло и пр.
Прямые валы изготавливают преимущественно из углеродных и легированных
сталей.
Валы рассчитывают на прочность.
Расчет вала на прочность.
Во время работы вал насоса подвергается воздействию крутящего момента,
осевой сжимающей нагрузки на верхний торец вала и радиальной нагрузки.
Радиальная нагрузка на вал вызывается насосным расположением валов секций
насоса и протектора и возможность неточного изготовления шлицевого
соединения.
Предварительно оценивают средний диаметр вала по внутреннему диаметру
шлицев d концентрационных напряжений и изгиба вала:
Wр=0,2*d3 вн.
где,
(3.27)
0,2*?кр
Максимальный крутящий момент:
где, N max– приводная мощность двигателя, 13 т;
w= ?*n - угловая скорость, сек;
30
п-частота вращения электродвигателя, об/мин.
Напряжение на кручение определяем по пределу текучести материала ?т.
Допустимое касательное напряжение при кручении принимаем с коэффициентом
запаса прочности ?=1,5;
?=[?]= ?т = ?т (3.18)
? 2?
Для вала насоса ЭЦН берем сталь 40ХН с пределом текучести ?=750 Мпа.
Насосное соединение валов и некомпенсированные зазоры создают радиальную
нагрузку в 60-130 кг.с, действующую на шлицевой конец вала насоса.
Радиальная нагрузка Р, находится по формуле:
(3.29)
где, К – коэффициент, учитывающий компенсирующее влияние зазоров
и равный 0,45-0,85;
Е – модуль упругости материала вала, Па.
J – момент инерции вала, принимаемый с учетом тела втулки. М;
?у – стрела прогиба шлицевого конца вала, вызванная неспособнос-
тью в сочленении насоса и протектора, принимается равным 25*10 м;
С – расстояние от центра подшипника до середины муфты, м;
Момент инерции вала:
(3.30)
где, а – ширина шлицы, м;
D – наружный диаметр шлицев, м;
z – число шлицев.
Радиальная нагрузка на вал Р2, зависящая от неравномерной передачи
крутящего момента шлицами малы и ею можно пренебречь.
Пять работающих шлицев дают нагрузку, равную 0,2*Р, где
где, D – средний диаметр шлицев.
Изгибающий момент на шлицевом конце вала:
где, b-расстояние от середины муфты или от точки приложения силы Р
до проточки под стопорное кольцо, м.
Мизг.max.=(Р1-Р2)*b.
Зная момент изгиба и момент кручения, можно определить напряжение изгиба
и кручения в опасном сечении вала (под проточку на стопорное кольцо).
(3.35)
где, Wх- момент сопротивления в месте проточки под стопорное кольцо,
м;
dкр.-диаметр вала в месте проточки под стопорное кольцо, м;
Напряжение кручения
Wр=2*Wx – полярный момент сопротивления вала в месте проточки под
стопорное кольцо;
Эквивалентное напряжение находим по четвертной прочности:
По этой величине и пределу текучести материала вала устанавливается запас
прочности с учетом статистических нагрузок:
Исходные данные:
Приводная мощность двигателя N = 2000Вт. Частота оборотов двигателя
п=2840 об/мин. Предел текучести материала вала ?=750 МПа. Модуль упругости
материала вала У=20*10 МПа. По данной методике произведем расчет с
цифровыми значениями:
Момент инерции вала:
J= ?*d4вн.+ а (D-dвн) * (D +dвн)2*z
64
J= 3,14*0,0124 + 0,0035 (0,017 – 0,012)*(0,017+0,012) 2*6
J=2,3*10-10 м;
Нагрузка создаваемая работающими шлицами:
Р2=0,2*Рокр.
Р2=0,2* Mкр.max
dср
Р2=0,2 * 2*67,28
0,0155
Р2= 1736,2584.
Максимальный изгибающий момент в месте проточки под стопорное кольцо:
Мизг.max= (Р1+Р2)*b
Мизг.max=(258,957+1736,258)*0,
Мизг.max=69,83 Н*м.
Минимальный изгибающий момент в этом сечении:
Мизг.min=(Р1-Р2)*b
Мизг.min=(258,957-1736,258)*0,
Мизг.min=51,74 Н*м;
Напряжение изгиба в опасном сечении:
?изг.max=Мизг.max
Wx
где, W= ?*d4кр
32*D
W=3,14*0,01574
32*0,017
W=3,51*10-7 м3;
Это мы нашли осевой момент сопротивления вала:
?изг.max.= 69,83
3,51*10-7
?изг.max =198,945Мпа
Минимальное напряжение изгиба
?изг.min.= 51,71
3,51*10-7
?изг.min.= 147,321 МПа
Напряжение кручения:
?кр=Мкр.max
Wp
где, Wр=2*Wх
Wр=2*3,51*10-7
Wр=7,02*10-7 м
Это мы нашли полярный момент сопротивления вала
?кр.= 67,28
7,02*10-7
?кр.=96,114 Мпа;
Эквивалентное напряжение:
?экв=??2 изг.max + ?кр2
?экв=?198,9452+3*96,1142
?экв.=259,409 Мпа;
Запас прочности по пределу текучести:
п= ?т ? 1,3
?экв
п= 750
259,409
п=2,8;
Из результатов расчетов видно, что вал из стали 40 ХН диаметром 17 мм со
шлицем и с проточкой под стопорное кольцо выдерживает заданные нагрузки с
коэффициентом запаса прочности п=2,8, который удовлетворяет условию
2,8>[1,4].
3.5.Прочностной расчет
3.5.1.Прочностной расчет корпуса насоса
Корпусы погружных центробежных насосов изготавливают из трубных
заготовок точением или из холодных комбинированных труб повышенной точности
длиной 2100, 3600 и 5000 мм.
Корпус насоса будет рассчитываться в следующей последовательности.
1.Выбираем наружный диаметр и внутренний корпуса насоса.
Dвн.=0,092 м, Dвн=0,08 м
2.Определяем предварительную затяжку пакета ступеней с учетом
коэффициента запаса плотности верхнего стыка по формуле:
T=?К?gНrвн.[1-Eк-Fк/2
(3.40)
где К – коэффициент запаса плотности стыка;
К=1,4
? - плотность воды;
?=1000м/кг
g – ускорение свободного падения;
g = 9,8 м/с
H- максимальный напор насоса;
Н =1300 м
r - внутренний радиус расточки корпуса насоса;
r=0,04 м
Ек- модуль упругости материала корпуса насоса;
Ек=0,1х10 6Мпа
Fк – площадь поперечного сечения корпуса насоса;
Fк=1,62х10 -3 м 2
Ена- модуль упругости материала направляющего аппарата;
Ена=1,45х10 5МПа
Fна – площадь поперечного сечения направляяющего аппарата;
Fна=6,08х10-4 м2
Т=3,14х1,4х1000х9,81х1160х0,
3 +1,45х105 х6,08х10-4 ) ]=48256Н
3.Находим общее усилие, действующее вдоль оси корпуса по выражению:
Q=Т+?gНrвн 2 EкFк/2(ЕкFк+ЕнаFна)+G + ?К?gНrвн
(3.41)
где Т – предварительная затяжка пакета ступеней, определенная по формуле
(3.40)
Т=48256Н
G – масса погружного агрегата;
G =20505 Н;
Hmax - максимальный напор насоса;
Нmax =3500 м
Q = 268519Н
4.Вычисляем осевое напряжение в опасных сечениях корпуса по формуле
где Q – общее усилие, действующее вдоль корпуса насоса, определенное по
выражению (3.41)
Q=268591 Н
Fк – площадь ослабленного сечения корпуса по наружному диаметру
трубы;
Fк =1,24х10-3 м2
?z=268519/1,24х10-3=220МПа
5.Определяем тангенциальное напряжение в опасных сечения, по выражению:
(3.43)
где S – толщина корпуса в опасном сечении;
S=0,009 м
M – коэффициент Пуассона;
M=0,28
?т=142 МПа
3.5.2.Прочностной расчет винтов страховочной муфты.
Расчет винтов на срез произведем по формуле:
где ? – напряжение среза действующее на винты страховочной муфты;
[?] – допускаемое напряжение среза.
Допускаемое напряжение среза определяется по формуле:
[?]=0,4?т
где ?т – предел текучести материала винта, для стали 35 из которой
изготовлены винты
?т=360МПА.
[?]=0,4х360=144МПа
Напряжение среза действующее на винты определяем по формуле
где S – сила среза действующая на винты;
d – внутренний диаметр резьбы;
d=0,0085 м;
z –количество винтов, z=2;
Находим силу среза по выражению
где m – масса насосного агрегата
m=709 кг
g – ускорение свободного падения;
g =9,8 м/с
S=709х9,81=6955,29 кгм/с2 =6955,29 Н
Определяем напряжение среза, действующее на винты страховочной муфты по
формуле (3.45)
?=6955,29х4/3,14х0,00855 х2=61285468 Па=61,29 МПа.
Прочностной рачсет винтов на срез является допустимой, так как 61,29<144
Коэффициент запаса прочности винтов определяем из выражения
Информация о работе Установки погружных центробежных насосов (УЭЦН)