Автор: Пользователь скрыл имя, 27 Февраля 2012 в 10:17, курсовая работа
На данный момент делается
упор на более надежное оборудование, для увеличения межремонтного периода,
и как следствие из этого снижение затрат на подъем жидкости. Этого можно
добиться, применяя центробежные УЭЦН вместо ШСН, так как центробежные
насосы имеют большой межремонтный период.
|ВВЕДЕНИЕ |7 |
|1.АНАЛИЗ СУЩЕСТВУЮЩИХ СХЕМ И КОНСТРУКЦИЙ. |8 |
|1.1.Назначение и технические данные ЭЦН. |8 |
|1.1.1.Историческая справка о развитии способа добычи. |8 |
|1.1.2.Состав и комплектность УЭЦН. |9 |
|1.1.3.Технические характеристики ПЭД. |14 |
|1.1.4.Основные технические данные кабеля. |15 |
|1.2. Краткий обзор отечественных схем и установок. |16 |
|1.2.1.Общие сведения. |16 |
|1.2.2.Погружной центробежный насос. |17 |
|1.2.3.Погружные электродвигатели. |18 |
|1.2.4.Гидрозащита электродвигателя. |18 |
|1.3.Краткий обзор зарубежных схем и установок. |19 |
|1.4. Анализ работы УЭЦН. |22 |
|1.4.1.Анализ фонда скважин. |22 |
|1.4.2.Анализ фонда ЭЦН. |22 |
|1.4.3.По подаче. |22 |
|1.4.4.По напору. |23 |
|1.5.Краткая характеристика скважин. |24 |
|1.6.Анализ неисправностей ЭЦН. |24 |
|1.7.Анализ аварийности фонда УЭЦН. |26 |
|2.ПАТЕНТНАЯ ПРОРАБОТКА. |28 |
|2.1.Патентная проработка. |28 |
|2.2.Обоснование выбранного прототипа. |30 |
|2.3.Суть модернизации. |31 |
|3. РАСЧЕТНАЯ ЧАСТЬ. |32 |
|3.1. Расчет ступени ЭЦН. |32 |
|3.1.1. Расчет рабочего колеса. |32 |
|3.1.2. Расчет направляющего аппарата. |35 |
|3.2.Проверочный расчет шпоночного соединения. |36 |
|3.3.Проверочный расчет шлицевого соединения. |38 |
|3.4.Расчет вала ЭЦН. |39 |
|3.5.Прочностной расчет |44 |
|3.5.1.Прочностной расчет корпуса насоса. |44 |
|3.5.2.Прочностной расчет винтов страховочной муфты. |45 |
|3.5.3.Прочностной расчет корпуса полумуфты. |45 |
|4.ЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ |47 |
|5.БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА. |53 |
|6.Литература. |63 |
|7. Приложение 1 |64 |
|8.Приложение 2 |65 |
|9.Приложение 3 |66 |
|10.Приложение 4 |67 |
|11. Приложение 5. |68 |
подача и напор насоса, скорость вращения вала и диаметр обсадной колонны
скважины для работы в которой предназначен насос. (1)
Подача, Q – 30 м\сут.
Напор, H – 1300 м.
Частота вращения вала, n – 3000 об\мин.
Внутренний диаметр корпуса насоса, d – 82 мм.
Внутренний диаметр корпуса ступени, d – 76,5 мм.
После того, как установлен внутренний диаметр ступени, можно приступать
непосредственно к расчету проточной части рабочего колеса и других
размеров.
Для этого необходимо выполнить следующее:
а) Определить наибольший внешний диаметр рабочего колеса D max
где, S – радиальный зазор между внутренней стеной корпуса ступени
D вн. и наибольшим диаметром рабочего колеса D max.
Этот зазор выбираем в пределах S=2-3 мм
б) Определим приведенную подачу рассчитываемой ступени:
где, 2800 – приведенная скорость вращения единичного насоса в об\мин.
90 – наибольший внешний диаметр рабочего колеса единичного
насоса в мм.
n – число оборотов вала, об\мин.
Q – рассчитываемая подача, л\с.
в) Определяем диаметр втулки при входе в рабочее колесо:
где, K d вт – коэффициент, соответствующий полученному значению
Q прив, 0,31.
После определения диаметра втулки необходимо проверить возможность
размещения вала насоса.
При этом должно быть соблюдено условие:
D = d + 2 ? вт.,
где, D вт – диаметр втулки, мм;
D в – диаметр вала насоса, мм;
?вт. – толщина ступени втулки (для погружных центробежных насосов с
диаметром корпуса 92-150, можно принять Sвт=2-4 мм);
г) Определяем наибольший диаметр входных кромок лопастей D1 max по
уравнению:
D1max=D2max
KD1max
где, КD1 max – коэффициент, определенный для Q прив, 2,3;
в) Определяем диаметр входа D в рабочее колесо:
К – коэффициент диаметра входа в рабочее колесо для данного
Qприв, 0,96;
е) Определяем наименьший диаметр входных кромок лопастей рабочего колеса
D2 min:
D2min=?D2вн.ст.–1*(D2max)2*
где, Fприв – приведенная площадь без лопаточного кольца между стенкой
корпуса ступени Dвн.ст. и ободом верхнего диска рабочего колеса
D2 min. Находят для Q Fприв = 1600 мм.
ж) Определяем наименьший диаметр входных кромок лопастей D1min:
где, KDmin – коэффициент определяемый для Qприв.
з) Определяем высоту канала b на выходе из рабочего колеса.
где, Кb2 – коэффициент, определяемый для Q, 0,016;
и) Определяем высоту канала b1 на входе в рабочее колесо.
Кb1 – коэффициент, определяемый для Q, 0,036;
к) Напор ступени определяют по коэффициенту окружной скорости
Кv2окр., пользуясь уравнением:
где, V2окр. – окружная скорость на диаметре D2max рабочего колеса;
Кv2окр.= ?D2ср.*n
где, K v2окр. – коэффициент окружной скорости, Кv2окр. = 1,33;
D2ср. – внешний диаметр рабочего колеса, мм;
п – число оборотов вала, об/мин;
g – ускорение свободного падения, м/с;
л) Определяем коэффициент быстроходности ступени;
м) Определяем конструктивные углы ?1 и ?2 от быстроходности ступени.
Расчет колеса:
а) D2max=Dвн.ст. – 2S
В2max=76,5-2*2
D=72,5 мм;
б)Qприв = 2800 (90 )3 *Q;
n D2max
Qприв = 2800 ( 90 )3 * 0,347;
3000 72,5
Qприв=0,6196 л\с;
в) d вт.=Кdвт*D2max
dвт=0,31*72,5
dвт=22,475 мм;
dвт=dв + 2?вт.
dвт=17+2*2/5
dвт= 22 мм;
г)D1max= D2max
KD1max
D1max=72,5
2,3
D=31,52 мм;
д) D0=К0*D1max;
D0=0,96*31,52;
D0=30,26 мм;
е) D2min=?D2 вн.ст. - 1 (D2max)2 *Fприв.
0,785 90
D2min=?76,52 – 1 (72,5)2 *1600
0,785 90
D2min=67,3 мм;
ж) D1min= D2max
KD1min
D1min= 72,5
2,2
D1min=32,95 мм;
з) b2=Кb2 * D2max;
b2=0,016*72,5
b2=1,16 мм;
и) b1=Кb1*D2max
b1=0,036*7,25=2,61 мм;
к) Н=(?Dср.* Н)2 * 1
60*КН2 2g
Н=(3,14*0,0725*3000) * 1
60*1,33 2*9,81
Н=3,73 м;
л) Hs=60;
м) ?1=27;
?2=53;
3.1.2. Расчет направляющего аппарата.
Осевой направляющий аппарат ступени погружного центробежного насоса
рассчитывают следующим образом:
а) Определяем приведенную подачу и по ней определим приведенную, а затем
действительную высоту рассчитываемой ступени:
б) Определяем высоту междулопаточных каналов:
где, b3пр.- приведенная высота от приведенной подачи, 3.3;
b3пр.= b3прив.* D2max
90
в) Находим диаметр диафрагмы D направляющего аппарата:
(3.14)
где, F”прив-приведенная площадь кольца внутренней стенкой корпуса
ступени и диаметром ступени, 800;
D3=?D2 вн.ст. – F’’прив. * (D2max)2
90
Расчет направляющего аппарата:
а) l=l прив. * D2max
90
l=22*72,5
90
l=17,7 мм;
б) b3=b3прив.*D2max
90
b3=3,3 * 72,5
90
b3=2,66 мм;
в) D3=?D2 вн.ст. – F’’ (D2max)2
0,785 90
D3=?76,52 – 800 (72,5)2
0,785 90
D3=72,04 мм;
КПД ступени 0,38
3.2.Проверочный расчет шпоночного соединения.
Шпоночное соединение проверяется по боковым граням шпонки под действием
окружного усилия, передаваемого рабочему колесу:
где, Мр.к. – момент передаваемый рабочему колесу.
D – диаметр вала;
t - глубина паза по валу;
l - длина посадочной части рабочего колеса;
h – высота шпонки.
Момент, передаваемый рабочему колесу определяется из мощности
передаваемой двигателем насосу. Мощность двигателя выбирают по основным
параметрам насоса. К основным параметрам относятся подача, напор, КПД. Для
определения напора необходимо определить количество ступеней находящихся в
насосе. Количество ступеней можно определить следующим образом. Существует
5 видов секций отличающихся длиной, в зависимости от длины в каждой секции
располагаются различное число ступеней. Для расчета возьмем следующий
насоса: ЭЦН М-5-50-1300 состоящий из 2-х секций № 2 и № 5, в некоторых
расположено 264 ступени, в секции № 2 расположено 73 ступени, а в секции №
5 расположено 192 ступени. Длина одной ступени ЭЦН 50 - 24 мм. Ступени
насоса в секциях располагаются в пределах:
где, n – число ступеней;
l - длина одной ступени;
L = (72*24) + (192*24)
L = 1728 + 4608
L = 6336 мм
Длина одной ступени ЭЦН – 30 равна 17,5 мм, в секциях расположится:
где, np – число ступеней, рассчитываемого насоса в двух секциях;
lp – длина одной ступени ЭЦН – 30.
np=6336
17,5
np=362 ступени
Значит в секции № 2 расположится 99 ступеней, а в секции № 5 расположится
263 ступени. Напор одной ступени равен 3,73 м. Общий напор равен
произведению количества ступеней на напор одной ступени:
где, h-напор одной ступени
H=362*3,73
H=1350,26 м
H=1350 м.
Гидравлическая мощность насоса равна:
где, Q – подача насосной установки;
H – напор насоса
j-относительный удельный вес жидкости
?-КПД насоса;
Q = 30 м3 /сут =3,5*10-4 м3 /с
Н = 1350 м
j=1900 кг/м3
?=0,43
Nг=3,5*10-4 *1350*1300
102*0,43
Nг =15 КВт
Мощность двигателя должна быть:
Nд ? 1,05 Nг,
где Nд – мощность двигателя;
Nг – гидравлическая мощность насоса;
Nд = 1,05*15
Nд=15,8 КВт
По (1) подбираем двигатель, соответствующий условию отраженному в формуле
(3.20):
Двигатель ЭД 20-103
Мощность двигателя Nд=20 КВт.
Момент, передаваемый на рабочее колесо:
где, Nдв. – мощность подобранного двигателя;
Nz – число рабочих колес, установленных в насосе;
n – число оборотов вала насоса;
Nz =362 ступени
n=2840 об/мин=47,33 об/сек
Мр.к. = 20*103
362*47,33
Мр.к.=1,17 Вт.
Расчет шпонки на смятие производится по формуле (3.15):
?см.= 2Мр.к.
D (h-t)*l
Мр.к.=1,17 Вт.
D=17мм=0,017 м
l=10мм=0,01 м
h=1,6мм=0,0016 м
t=0,8мм=0,0008 м
?см= 2*1,17
0,017(0,0016-0,0008)*0,01
?см.=17205881 Н/м2
?см.=17,2 Мпа
Шпонка представляет собой кружок твердый, вытянутый, изготовленный из
латуни марки П63. Сопротивление латуни этой марки разрыву:
?в=75-95 кгс/мм2
?в=750-950 МПа
Сопротивление смятию находится в пределах Ѕ ?в, запас прочности на смятие
нас удовлетворяет.
3.3.Проверочный расчет шлицевого соединения.
Шлицевое соединение проверяется на смятие по формуле:
где, Т – передаваемый вращаемый момент;
z - число шлицев;
Ам – расчетная поверхность смятия;
Rср. – средний радиус шлицевого соединения.
Средний радиус шлицевого соединения определяется как:
где, d-диаметр впадин шлицев, ;
D-максимальный диаметр шлицев;
D=0,017 м
d=0,0137 м
Rср.=0,25 (0,017+0,137)
Rср.=0,007675 м
Расчетная поверхность смятия равна:
Информация о работе Установки погружных центробежных насосов (УЭЦН)