Автор: Пользователь скрыл имя, 14 Марта 2012 в 19:20, курсовая работа
В технологии изготовления пищевых продуктов качество и состав сырья, эффективность производственных процессов, экологическая безопасность, соответствие выпускаемой продукции установленным нормам, соблюдение санитарно-гигиенических требований имеют большое значение. Решение всех перечисленных вопросов требует знания методов исследования пищевого сырья и готовых продуктов.
Введение…………………………………………………………….…...
4
Глава 1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ОЦЕНКИ КАЧЕСТВА СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ.………………………….
5
1.1. Термины и определения……………………………………………
5
1.2 Организация лабораторного контроля…………………………….
6
1.3 Методы определения показателей качества сырья и продуктов питания…………………………………………………………………..
12
Глава 2. ИЗМЕРИТЕЛЬНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ…...
18
2.1 Спектральные методы……………………….……………………...
18
2.2 Рефрактометрия и поляриметрия…………………………………..
26
2.3 Хроматография………………………………………………………
30
2.4 Реологические методы исследования……………………………...
31
Глава 3. ПРИКЛАДНОЕ ИСПОЛЬЗОВАНИЕ ФИЗИКО-
ХИМИЧЕСКИХ МЕТОДОВ ПРИ ОЦЕНКЕ КАЧСТВА СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ………………………………………….
35
3.1 Относительная плотность…………………………………………..
35
3.2 Кислотность………………………………………………………….
37
3.3 Сухие вещества и влажность……………………………………….
38
3.4 Активность воды…………………………………………………….
41
3.5 Белок………………………………………………………………….
42
3.6 Липиды……………………………………………………………….
59
3.7 Углеводы……………………………………………………………..
62
3.8 Витамины…………………………………………………………….
67
3.9 Минеральные вещества……………………………………………..
71
3.10 Функционально-технологические свойства……………………...
75
3.11 Безопасность пищевых продуктов………………………………..
76
Глава 4. ЛАБОРАТОРНЫЙ ПРАКТИКУМ……………………….
80
Библиографический список…………………………………………..
98
Вопросы для подготовки к сдаче зачета……………
на связывании спектро-
красителей скопии
Рисунок 3.2 – Методы определения белка
Для наблюдения реакции в пробирки наливают по 1-2см3 белка с равным количеством 4 % раствора щёлочи и добавляют 1-2 капли 0,5% раствора медного купороса.
Реакцию
дают все белки, а так же
продукты их гидролиза -
Другой
качественной реакцией на
Существуют
также частные реакции на
Во второй группе реакций белки осаждают действием солей, органических растворителей, концентрированных кислот, щелочей, ионов тяжёлых металлов, температуры и в изоэлектрической точке. Белки в растворённом состоянии крайне неустойчивы, поэтому при добавлении органических растворителей (спирт, ацетон), концентрированных растворов нейтральных солей щелочных металлов и воздействий физических факторов (нагревание, облучение, ультразвук) гидратная оболочка разрушается и они выпадают в осадок.
Так как белковые вещества сырья (муки,
крупы, молока, мяса), включая ферменты,
часто являются определяющими в
обеспечении качества пищевых изделий,
то для изучения физико-химических,
биохимических и
Наиболее распространённым количественными методами являются метод Кьельдаля, Лоури с реактивом Фолина, Войвуда в модификации Т.А. Глагоревой, К.А. Мерка.
Содержание белка в пищевых объектах обычно определяют по количеству азота с использованием метода Кьельдаля. С целью упрощения и сокращения длительности анализа этот метод с момента его разработки (1983) неоднократно модифицировался с применением различных катализаторов и условий минерализации. На основе модифицированных методов созданы высокопроизводительные автоматические анализаторы типа «Кьельфос», стоимость определения содержания белка на которых и сегодня остаётся высокой.
Метод основан на
Химическая
реакция аммиака с борной
Существует и некоторая
Для перевода количества азота в содержание белка используют коэффициент 6,25. Принят он потому, что большинство белков содержит 16 % азота (100:6,25 = 16). Однако более правильным является использование коэффициентов, соответствующих фактическому содержанию сырого белка в каждом его виде. Так, для пшеницы получен коэффициент 5,7, так как её белки содержат 17,5 % азота. Для других белковых ресурсов коэффициенты перевода приняты следующими: 5,7 – рожь, ячмень, овёс, семена подсолнечника; 5,8 – соя; 6,25 – кукуруза, мясо; 6,38 – молоко.
Колориметрический метод определения белка (Метод Лоури) основан на реакции белков с реактивом Фолина, дающей синее окрашивание. Интенсивность окраски определяют на фотоэлектроколориметре с красным светофильтром (или на спектрофотометре при длине волны 750 нм). Количество белка в растворе находят по калибровочной кривой. Метод применяют для определения белка в растворах с концентрацией от 10 до 100мкг.
В основе биуретового метода лежит биуретовая реакция. По оптической плотности с использованием калибровочных графиков находят концентрацию белка в растворах. Этот метод определения белка требует для выполнения доступных реактивов и используется для определения белков в растворах, в том числе предназначенных для электрофореза.
Имеются различные методы определения азота, такие как метод Дюма, нейтронно-активационный и с фенолятгипохлоридом на приборе «Техникон». Принцип метода Дюма заключается в разложении органического соединения в атмосфере оксида углерода до газообразного состояния с последующим измерением объёма азота (N2). В нейтронно-активационном методе атомы азота образца бомбардируются нейтронами в ядерном реакторе с получением изотопа 13N. Содержание белка рассчитывают по количеству гамма-лучей.
Широкое распространение получил метод инфракрасной спектроскопии, в основе которого лежит поглощение белками света с определённой длиной волны и измерение интенсивности его отражения в пробах анализаторах. Приборы калибруют по образцам зерна (эталонам) с известным содержанием белка, определяемым по методу Кьельдаля.
Известны методы количественного определения белка, основанные на различной степени помутнения (нефелометрический метод), способности белков адсорбировать красители (кумасси синий R-250, амидочёрный и др.) и преломлять лучи света (по показателю преломления). Они характеризуются высокой точностью и простотой определения, хотя имеют ряд ограничений. Наиболее удобными являются методы с кумасси синим, биуретовый и Лоури.
Массовую долю белка определяют
также колориметрическим
Определение массовой доли белков методом формольного титрования. Этот метод применяют для контроля массовой доли белка в молоке кислотностью не более 22оС. Он основан на реакции щелочных аминогрупп белка с формалином, в результате которой высвобождаются карбоксильные кислые группы белка. При этом повышается титруемая кислотность молока. По приросту которой определяют массовую долю белка в молоке.
Для определения массовой доли белка в молоке применяют также рефрактометрический метод. Он основан на изменении показателей преломления молока и безбелковой молочной сыворотки, полученной из того же образца молока, разность между которыми пропорциональна массовой доле белка в молоке.
При изучении физико-химических свойств белков и их превращении в пищевых системах широко используют методы фракционирования и очистки от небелковых соединений. Они основаны на различии таких свойств белков, как размер молекул, растворимость заряд и сродство к специфическим химическим группам.
Общая схема операций по выделению белков сводится к измельчению биологического материала (гомогенизации), экстрагирования и собственно выделению, то есть очистки и получению белка в индивидуальном состоянии.
Осаждение белков из раствора под действием солей щелочных и щелочноземельных металлов называют высаливанием. Для высаливания чаще применяются сульфат аммония, под влиянием которого белки, как правило, сохраняют растворимость и ферментативную активность.
Глобулины выпадают в осадок при 50 % насыщении, альбумины при 100 % насыщении растворов солей, а при ступенчатом фракционировании (20-100 % насыщения) выпадают белки и других классов (проламины, глютелины).
В практике выделения и очистки белков используются различные типы хроматографии: адсорбционная, распределительная, ионообменная и хроматография по сродству.
Адсорбционнная хроматография основана на различиях в полярности белков. В колонке вместе с буферным раствором упаковывают адсорбент, на который в небольшом объёме растворителя наносят исследуемый образец. Компоненты разделяемой смеси адсорбируются, затем элюируются с помощью буферного раствора с увеличивающейся концентрацией или полярностью. Фракции белка собирают с помощью автоматического коллектора фракций.
В распределительной
Методом ионообменной хроматографии белки или аминокислоты разделяют на основе различий в общем заряде молекул. Если белок в нейтральной среде (рН 7) имеет положительный заряд, то он связывается на колонке с ионообменником, содержащим фенольные, сульфо- и карбоксильные группы (катионообменник). Чаще всего для фракционирования белков используют производные полистерола и целлюлозы.
Положительно заряженный белок снимается с колонки с помощью раствора хлористого натрия или изменением рН элюирующего буфера. При этом ионы натрия конкурируют с положительно заряженными группами белков. Белки с меньшим положительным зарядом вымываются с колонки первыми, с большим зарядом – последними.
Хроматография по сродству (аффинная хроматография) основана на принципе избирательного связывания белков со специфическими веществами (лигандами) прикреплёнными к носителю. Лиганды (глюкозу) ковалентно присоединяют к носителю (проводя иммобилизацию) и наносят на колонку исследуемую белковую смесь. Несвязавшиеся белки удаляют соответствующим буфером, а нужный белок элюируют раствором, содержащим лиганд в очень высокой концентрации. При этом присоединённые к колонке остатки глюкозы в молекуле белка замещаются на глюкозу, находящуюся в растворе.
Гель-фильтрация, или метод молекулярных сит заключается в пропускании белков через колонку с гелем сефадекса или других типов (агарозных, полистирольных). Применяются также пористые стеклянные шарики и пористый кварц (порасил).
Принцип методов электрофоретического разделения заключается в способности молекул пептидов и аминокислот, находясь в заряженной форме в виде катионов (+) или анионов (-), передвигаться в электрическом поле с определённой скоростью.
Очень высокую разрешающую
В организме синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые незаменимыми. Заменимые аминокислоты способны заменять одна другую в рационе, так как они превращаются одна в другую или синтезируются из промежуточных продуктов углеводного или липидного обмена.
Жизнедеятельность человека обеспечивается ежедневным потреблением с пищей сбалансированной смеси, содержащей восемь незаменимых аминокислот и две частичнозаменимые. Незаменимые представлены аминокислотами с разветвлённой цепью углерода – лейцином, изолейцином и валином, ароматическими – фенилаланином, триптофаном и алифатическими – треонином, лизином и метионином. К частичнозаменимым относят аргинин и гистидин, так как в организме они синтезируются довольно медленно.
Важным понятием, характеризующим качество поступающего в организм белка, является биологическая ценность, то есть наличие незаменимых аминокислот и степень их усвоения. Чем ближе потребляемый белок по аминокислотному составу подходит к составу белков организма, тем выше его биологическая ценность.
Изучение химического состава пищевых продуктов, закономерностей метаболических превращений в организме каждого из многочисленных белковых веществ, входящих в состав продукта, выявление их участия в жизнедеятельности, а также интегрального биологического эффекта, привело к возникновению научных представлений о биологической ценности, под которой понимают относительную степень задержки азота пищи или эффективность его утилизации для поддержания азотистого равновесия, зависящая от аминокислотного состава и других структурных особенностей белков. Таким образом, термин «биологическая ценность» отражает качество белковых компонентов продукта, связанных как с перевариванием белка, так и со степенью сбалансированности его состава. Биологическая ценность может быть определена химическими и биологическими методами (например, с использованием тест-организмов).
Информация о работе Методы исследования свойств сырья и продуктов питания