Автор: Пользователь скрыл имя, 25 Февраля 2013 в 14:32, курсовая работа
Рассмотреть технологии разработки и внедрения Хранилищ Данных. Подготовить этапы проекта. Выбор модели и структуры Хранилищ Данных.Рассмотреть понятие Витрины Данных. Анализ данных: OLAP. Разработать хранилище данных для врача-травмотолога. Подвести итоги.
Введение
1 Реферат……………………………………………………………………………………...5
Зарождение концепции хранилища данных…………………………...…...5
Логическая архитектура хранилища данных……………….………………6
Физическая архитектура хранилища данных…………………………...….8
Технология разработки и внедрения Хранилища Данных………………………….....9
Этапы проекта………………………………………………………………..9
Выбор модели данных Хранилища………………………..………………11
Выбор Структуры Хранилища Данных………………………………...…14
Витрины Данных………………………………………………………...…15
Хранилище Метаданных (Репозиторий)……………………………….....18
Загрузка хранилища……………………………………………………..…20
Анализ данных: OLAP……………………………………………………..22
3 Интеллектуальный анализ данных……………………………………………….........24
4 Разработка хранилища данных для врача травматолога ………………………….…26
4.1 Постановка задачи…………………………………………………………...26
4.2 Математическая модель………………………………………………….….27
4.3 Логическая модель…………………………………………………….….....27
4.4 Практическая реализация СППР для врача травматолога…………..….29
4.5 Результаты работы…………………………………………………....…….30
Заключение
Список литературы
Идея Витрины Данных (Data Mart) возникла несколько лет назад, когда стало очевидно, что разработка корпоративного хранилища - долгий и дорогостоящий процесс. Это обусловлено как организационными, так и техническими причинами:
В совокупности это приводит к тому, что разработка и внедрение корпоративного хранилища требуют значительных усилий по анализу деятельности компании и переориентации ее на новые технологии. Витрины Данных возникли в результате попыток смягчить трудности разработки и внедрения Хранилищ.
Сейчас под Витриной Данных понимается специализированное Хранилище, обслуживающее одно из направлений деятельности компании, например учет запасов или маркетинг. Важно, что происходящие здесь бизнес-процессы, во-первых, относительно изучены и, во-вторых, не столь сложны, как процессы в масштабах всей компании. Количество сотрудников, вовлеченных в конкретную деятельность, также невелико (рекомендуется, чтобы Витрина обслуживала не более 10-15 человек). При этих условиях удается с использованием современных технологий развернуть Витрину подразделения за 3-4 месяца. Необходимо отметить, что успех небольшого проекта (стоимость которого невелика по сравнению со стоимостью разработки корпоративного Хранилища), во-первых, способствует продвижению новой технологии и, во-вторых, приводит к быстрой окупаемости затрат.
Первые же попытки внедрения
Витрин Данных оказались настолько
успешными, что вокруг новой технологии
начался настоящий бум. Предлагалось
вообще отказаться от реализации корпоративного
Хранилища и заменить его совокупностью
Витрин Данных. Однако вскоре выяснилось,
что с ростом числа Витрин растет
сложность их взаимодействия, поскольку
сделать витрины полностью
Фактическим стандартом структуры
данных при разработке Витрины является
"звезда", основанная на единственной
таблице фактов. При построении схемы
взаимодействия корпоративного Хранилища
и Витрин Данных в рамках создания
СППР рекомендуется определить некоторую
специальную структуру для
Несколько фирм предлагает системы построения Витрин Данных: Informatica (PowerMart Suite), Sagent Technology (Data Mart Solution) и Oracle (DataMart Suite). Для иллюстрации процесса разработки Витрины Данных можно рассмотреть вкратце состав и функциональность пакета DataMart Suite.
Пакет включает пять основных компонентов: Data Mart Designer, Data Mart Builder, Oracle7 Enterprize Server, Web Server и Discoverer 3.0. Data Mart Designer позволяет описывать структуру Витрины и запоминать ее в Репозитарии. На выходе Data Mart Designer порождает описание на языке DDL SQL, которое затем подается на вход Oracle7 Enterprize Server. В результате создается структура базы данных, реализующая Витрину Данных. В ходе построения Витрины пользователь может применять существующие описания структур или строить Витрину "с нуля". Кроме того, Data Mart Designer позволяет строить приложения для Oracle Web Server на базе PL/SQL.
Data Mart Builder извлекает данные из внешних источников и заполняет Витрину. Он обладает наглядным специализированным интерфейсом, отображающим потоки данных при заполнении Хранилища. Data Mart Builder способен извлекать данные из реляционных СУБД и CSV-файлов. Web Server предоставляет открытую платформу для разработки Web-приложений. Он включает Web Request Broker (WRB), реализованный на основе технологии картриджей и позволяющий разрабатывать Web-приложения, встраиваемые в Web Server. В качестве средств разработки могут использоваться Java, PL/SQL, LiveHTML, C и C++. Discoverer 3.0 - это средство конечного пользователя, позволяющее генерировать отчеты, а также выполнять некоторые OLAP-операции с Витриной Данных. Отчеты, построенные с помощью Discoverer 3.0, можно экспортировать в формате HTML, делая их доступными для Web-браузеров. Discoverer 3.0 также позволяет создавать и поддерживать таблицы агрегированных данных. Помимо этого, DataMart Suite включает готовое приложение, называемое Sales Analyzer.
Принципиальное отличие
Широко известны Репозитарии, входящие в состав популярных CASE-средств (Power Designer (Sybase), Designer 2000 (Oracle), Silverrun (CSA Research)), систем разработки приложений (Developer 2000 (Oracle), Power Builder (Sybase)), администрирования и поддержки информационных систем (Platinum, MSP). Все они, однако, решают частные задачи, работая с ограниченным набором метаданных, и предназначены, в основном, для облегчения труда профессионалов - проектировщиков, разработчиков и администраторов информационных систем. Репозитарий метаданных СППР на основе ХД предназначен не только для профессионалов, но и для пользователей, которым он служит в качестве поддержки при формировании бизнес-запросов. Более того, развитая система управления метаданными должна обеспечивать возможность управления бизнес-понятиями со стороны пользователей, которые могут изменять содержание метаданных и образовывать новые понятия по мере развития бизнеса. Тем самым репозитарий превращается из факультативного инструмента в обязательный компонент СППР и ХД.
Разработка системы управления метаданными сходна с разработкой распределенной транзакционной системы. При ее создании необходимо решать следующие задачи:
Опыт реализации систем управления метаданными показывает, что основная трудность состоит не в программной реализации, а в определении содержания конкретных метаданных и методики работы с ними, в практическом внедрении Репозитория. Кроме того, если подходить к проектированию итерационно, последовательно переходя от разработки соответствующих бумажных форм и методик к созданию CASE-модели метаданных, от централизованной к распределенной модели, используя в качестве системы для хранения метаданных промышленную реляционную СУБД, можно значительно упростить задачу.
Поскольку большинство CASE-средств использует различные форматы метаданных, поставщики систем управления метаданными выработали стандарт обмена MDIS, обеспечивающий возможность интеграции CASE-средств в СППР на основе ХД. К сожалению, не все предлагаемые сегодня на российском рынке продукты соответствуют этому стандарту, поэтому преобразование форматов метаданных представляет собой достаточно сложный процесс, упростить который призваны специализированные программные продукты, в том числе, например, средства фирмы Evolutionary Technologies International или Prism Solutions (Data Warehouse Directory).
Когда структура метаданных разработана и система управления ими спроектирована, решается задача заполнения и обновления данных в ХД.
Какие данные должны быть помещены в Хранилище? Как найти и извлечь эти данные? Как обеспечить корректность данных в Хранилище? Подобные вопросы являются ключевыми при проектировании Хранилищ. В сущности, определяя, чем заполняется Хранилище, мы неявно определяем спектр задач, которые будут решаться с его помощью, и круг потенциальных пользователей.
При описании технологии заполнения Хранилища будем различать три взаимосвязанные задачи: Сбор Данных (Data Acquisition), Очистка Данных (Data Cleansing) и Агрегирование Данных (Data Consolidation).
Под Сбором Данных будем понимать процесс, который состоит в организации передачи данных из внешних источников в Хранилище. Лишь некоторые аспекты этого процесса полностью или частично автоматизированы в имеющихся продуктах. Прежде всего, это относится к интерфейсам с существующими БД. Как правило, здесь имеется несколько возможностей. Во-первых, поддерживаются интерфейсы всех крупных производителей серверов баз данных (Oracle, Informix, ADABAS и т. д.). Во-вторых, практически всегда имеется ODBC-интерфейс, и, в-третьих, можно извлекать данные из текстовых файлов в формате CSV (comma separated values) и из некоторых структурированных файлов, например файлов dBase. Набор имеющихся интерфейсов - важнейшая характеристика, которая часто позволяет оценить, для каких задач проектировался продукт. Так, если среди поддерживаемых интерфейсов имеются AS/400, DB2/400, IMS, VSAM (как в популярном продукте PASSPORT фирмы Carleton), то он предназначен скорее для использования в системах, работающих на больших мэйнфреймах, чем в сети из ПК. Несколько иной набор интерфейсов предлагает, например, хорошо известный продукт InfoPump фирмы PLATINUM Technology, который обеспечивает поддержку Lotus Notes, Microsoft Access, dBase и работу с текстовыми файлами. Крупные производители серверов либо имеют собственные средства сбора данных либо устанавливают партнерские отношения с производителями таких средств и разрабатывают инструментарий промежуточного уровня для тиражирования "чужих" данных (таков, например, Replication Server фирмы Sybase).
Второй аспект процесса сбора данных,
который автоматизирован в
Под очисткой данных обычно понимается процесс модификации данных по ходу заполнения Хранилища: исключение нежелательных дубликатов, восстановление пропущенных данных, приведение данных к единому формату, удаление нежелательных символов (например, управляющих) и унификация типов данных, проверка на целостность. Практически все продукты располагают тем или иным набором средств очистки данных и соответствующими средствами диагностики.
При заполнении Хранилища агрегированными данными мы должны обеспечить выборку данных из транзакционной базы данных и других источников в соответствии с метаданными, поскольку агрегирование происходит в терминах бизнес-понятий. Так, например, агрегированная величина "объем продаж продукта Х в регионе Y за последний квартал" содержит понятия "продукт" и "регион", которые являются бизнес-понятиями данного предприятия. Следует подчеркнуть, что задача выборки необходимых данных не может быть решена полностью автоматически: возможны коллизии (отсутствие необходимых данных, ошибки в данных и т. п.), когда вмешательство человека окажется необходимым. Далее, предполагая, что объектом анализа являются числовые показатели, связанные с бизнес-понятиями, такие как ОБЪЕМ ПРОДАЖ или ПРИБЫЛЬ, необходимо определить правила вычисления этих показателей для составных бизнес-понятий, исходя из их значений для более простых бизнес-понятий. Это и есть правила агрегирования.
Простейшей архитектурой системы на основе ХД является архитектура клиент-сервер. Традиционно само хранилище размещается на сервере (или на серверах), а анализ данных выполняется на клиентах. Некоторое усложнение в эту схему вносят Витрины Данных. Они также размещаются на серверах, но, учитывая взаимодействия между Витринами, приходится вводить так называемые переходники (Hub Servers), через которые идет обмен данными между Витринами.
Предположим теперь, что в общем случае имеется корпоративное ХД и ряд Витрин Данных. Каким образом следует организовать доступ к информации для анализа? Сейчас принята точка зрения, согласно которой требуется обеспечить возможность анализа данных как из Витрин, так и непосредственно из Хранилища. Разница здесь определяется не столько размером базы (Витрина может лишь ненамного уступать Хранилищу), сколько тем, что Витрины, как правило, не содержат детальных - неагрегированных данных. Это означает, что анализ данных Витрины не требует глубокой детализации и часто может быть выполнен более простыми средствами.
Наряду с мощными серверами многомерных баз данных и ROLAP-серверами на рынке предлагаются клиентские OLAP-серверы, предназаначенные, главным образом, для работы с небольшими объемами данных и ориентированные на индивидуального пользователя. Подобные системы были названы настольными, или DOLAP-серверами (Desktop OLAP). В этом направлении работают фирмы Business Objects (Business Objects 5.0), Andyne (CubeCreator, PaBLO), Cognos, Brio Technology.