Автор: Пользователь скрыл имя, 21 Февраля 2013 в 18:24, контрольная работа
Имеются следующие данные о стоимости материальных оборотных фондов и выпуске продукции на предприятиях одной из отраслей экономики за год (выборка 10%-ная механическая), млн. руб.:
Таблица 1
Исходные данные
№ предприятия
п/п
Среднегодовая стоимость материальных оборотных фондов
Выпуск продукции
Рассчитаем общую дисперсию:
Для расчета межгрупповой дисперсии строится вспомогательная таблица 13. При этом используются групповые средние значения из табл. 8 (графа 5).
Группы предприятий по среднегодовой стоимости материальных оборотных фондов, млн. руб., x |
Число предприятий, fj |
Среднее значение в группе, млн руб. |
||
1 |
2 |
3 |
4 |
5 |
10-14 |
3 |
18 |
-22 |
1452 |
14-18 |
4 |
24 |
-16 |
1024 |
18-22 |
12 |
38 |
-2 |
48 |
22-26 |
6 |
49 |
9 |
486 |
26-30 |
5 |
60 |
20 |
2000 |
ИТОГО |
30 |
5010 |
Рассчитаем межгрупповую дисперсию:
Определяем коэффициент детерминации:
Вывод. 81,5% вариации выпуска продукции предприятиями обусловлено вариацией среднегодовой стоимости материальных оборотных фондов, а 18,5% – влиянием прочих неучтенных факторов.
Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле
Рассчитаем показатель :
Вывод: согласно шкале Чэддока связь между среднегодовой стоимостью материальных оборотных фондов и выпуском продукции предприятиями является весьма тесной.
3. Оценка значимости (неслучайности) полученных характеристик
связи признаков
Показатели и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.
Проверка выборочных показателей на их неслучайность осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации служит дисперсионный F-критерий Фишера, который рассчитывается по формуле
где n – число единиц выборочной совокупности,
m – количество групп,
– межгрупповая дисперсия,
– дисперсия j-ой группы (j=1,2,…,m),
– средняя арифметическая групповых дисперсий.
Величина рассчитывается, исходя из правила сложения дисперсий:
где – общая дисперсия.
Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1 = m - 1, k2 = n - m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р = 0,95).
Если Fрасч>Fтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность.
Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.
Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:
k2 | ||||||||||||
k1 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
3 |
3,01 |
2,99 |
2,98 |
2,96 |
2,95 |
2,93 |
2,92 |
2,91 |
2,90 |
2,89 |
2,88 |
2,87 |
4 |
2,78 |
2,76 |
2,74 |
2,73 |
2,71 |
2,70 |
2,69 |
2,68 |
2,67 |
2,66 |
2,65 |
2,64 |
5 |
2,62 |
2,60 |
2,59 |
2,57 |
2,56 |
2,55 |
2,53 |
2,52 |
2,51 |
2,50 |
2,49 |
2,48 |
Расчет дисперсионного F-критерия Фишера для оценки =81,5%, полученной при =205, =167:
Fрасч
Табличное значение F-критерия при = 0,05:
n |
m |
k1=m-1 |
k2=n-m |
Fтабл ( |
30 |
5 |
4 |
25 |
2,76 |
ВЫВОД: поскольку Fрасч>Fтабл, то величина коэффициента детерминации =81,5% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Среднегодовая стоимость материальных оборотных фондов и Выпуск продукции правомерны не только для выборки, но и для всей генеральной совокупности предприятий.
По результатам выполнения задания 1 с вероятностью 0,954 необходимо определить:
1. Ошибку выборки средней стоимости материальных оборотных фондов и границы, в которых будет находиться средняя стоимость материальных оборотных фондов в генеральной совокупности.
Выполнение Задания 3
Целью выполнения данного Задания является определение для генеральной совокупности предприятий региона границ, в которых будут находиться средняя величина среднегодовой стоимости материальных оборотных фондов и доля предприятий со среднегодовой стоимостью материальных оборотных фондов не менее 22 млн. руб.
1. Определение ошибки выборки для величины среднегодовой стоимости материальных оборотных фондов, а также границ, в которых будет находиться генеральная средняя
Применяя выборочный метод наблюдения, необходимо рассчитать ошибки выборки (ошибки репрезентативности), т.к. генеральные и выборочные характеристики, как правило, не совпадают, а отклоняются на некоторую величину ε.
Принято вычислять два вида ошибок выборки - среднюю и предельную .
Для расчета средней ошибки выборки применяются различные формулы в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.
Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка для выборочной средней определяется по формуле
где – общая дисперсия изучаемого признака,
N – число единиц в генеральной совокупности,
n – число единиц в выборочной совокупности.
Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:
где – выборочная средняя,
– генеральная средняя.
Предельная ошибка выборки кратна средней ошибке с коэффициентом кратности t (называемым также коэффициентом доверия):
Коэффициент кратности t зависит от значения доверительной вероятности Р, гарантирующей вхождение генеральной средней в интервал , называемый доверительным интервалом.
Наиболее часто используемые доверительные вероятности Р и соответствующие им значения t задаются следующим образом (табл. 14):
Таблица 14
Доверительная вероятность P |
0,683 |
0,866 |
0,954 |
0,988 |
0,997 |
0,999 |
Значение t |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
3,5 |
По условию Задания 2 выборочная совокупность насчитывает 30 предприятий, выборка 10% механическая, следовательно, генеральная совокупность включает 300 предприятий. Выборочная средняя , дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 15:
Таблица 15
Р |
t |
n |
N |
||
0,954 |
2 |
30 |
300 |
20,8 |
21,7156 |
Рассчитаем среднюю ошибку выборки:
Рассчитаем предельную ошибку выборки:
Определим доверительный интервал для генеральной средней:
или
Вывод. На основании проведенного выборочного обследования с вероятностью 0,954 можно утверждать, что для генеральной совокупности предприятий средняя величина среднегодовой стоимости материальных оборотных фондов находится в пределах от 19,2 до 22,4 млн. руб.
2. Определение ошибки выборки для доли предприятий со среднегодовой стоимостью материальных оборотных фондов 22,0 и более млн. руб., а также границ, в которых будет находиться генеральная доля
Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой
где m – число единиц совокупности, обладающих заданным свойством;
n – общее число единиц в совокупности.
Для собственно-случайной и механической выборки с бесповторным способом отбора предельная ошибка выборки доли единиц, обладающих заданным свойством, рассчитывается по формуле