Автор: Пользователь скрыл имя, 22 Сентября 2012 в 18:35, курс лекций
Информация — это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состояниях, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.
Информатика рассматривает информацию как связанные между собой сведения, изменяющие наши представления о явлении или объекте окружающего мира. С этой точки зрения информацию можно рассматривать как совокупность знаний о фактических данных и зависимостях между ними.
1. ПОНЯТИЕ ИНФОРМАЦИИ, ИНФОРМАЦИЯ И ДАННЫЕ, ФОРМЫ АДЕКВАТНОСТИ ИНФОРМАЦИИ. МЕРЫ ИНФОРМАЦИИ
2. БАЗЫ ДАННЫХ КАК ИНФОРМАЦИОННЫЕ МОДЕЛИ ПРЕДМЕТНЫХ ОБЛАСТЕЙ
3. СИСТЕМА УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ (СУБД), НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ
4. Таблицы. Схема данных
5. ТРАНЗАКЦИИ И ЦЕЛОСТНОСТЬ БД
6. СОЗДАНИЕ И ИСПОЛЬЗОВАНИЕ ИНДЕКСОВ И ФИЛЬТРОВ БД
7. РОЛЬ И МЕСТО БД В ИНФОРМАЦИОННЫХ СИСТЕМАХ
8. Основные понятия и классификация сетей ЭВМ
9. Понятия протокола и интерфейса. Основные вопросы организации уровней взаимодействия
10. Сравнительная характеристика сред передачи: витая пара, коаксиальный кабель, оптоволокно
11. Сравнительная характеристика технологий беспроводной связи
12. Телефонные сети (ТфС): структура, цифровая передача в ТфС
13. Спутниковая связь
14. Цифровое кодирование
15. Сравнительная характеристика методов коммутации: каналов, сообщений, пакетов
16. Принципы маршрутизации. Алгоритмы маршрутизации
17. ВИДЫ СЕРВЕРОВ
18. СЕРВЕР БАЗ ДАННЫХ
19. СЕРВЕР (АППАРАТНОЕ ОБЕСПЕЧЕНИЕ)
20. модель TCP/IP. Протоколы Инетернет
21. ПОНЯТИЕ ДОМЕНА. ПОДДЕРЖКА ДОМЕНОВ В РЕАЛЬНЫХ БД
Когда надо соединить несколько рядом стоящих компьютеров, то обычно прокладывают кабель. Когда кабель должен пройти через дорогу или пересечь общественные, городские коммуникации дело становиться сложнее, а стоимость огромной. В этих случаях единственным выходом является обратиться к телефонной компании.
Телефонная сеть создавалась давно и целями далеко от тех, которые преследуются при передаче данных между ЭВМ. Поэтому качество передачи данных далеко от совершенства. Однако, ситуация меняется по мере замены меди на оптоволокно и переходе на цифровую систему передачи. Телефонные сети тесно переплетаются с компьютерными сетями, особенно с WAN.
Поэтому много усилий было положено, чтобы научиться использовать столь низкого качества линии для передачи данных между компьютерами.
Структура телефонной сети
Когда в 1876 Александр Белл запатентовал телефон, структура сети представлялась ему очень простой. Абоненты соединялись неизолированным проводом каждый с каждым. Если абонент хотел поддерживать связь с несколькими абонентами в городе, то к нему приходило несколько проводов. Вскоре некоторые дома напоминали джунгли.
К 1878 году стало ясно что так развивать сеть нельзя и Белл строит первую станцию коммутации, с которой соединяются абоненты. Чтобы соединиться абонент крутил ручку, вызывая оператора, сообщал ему с кем он хочет соединиться (классическое :Барышня, дайте Смольный, пожалуйста.), и оператор механически, с помощью штыря соединял проводом гнезда коммутатора. Спустя некоторое врем абоненты выразили желание сообщаться с абонентами в других городах. Потребовалось соединять между собой станции коммутации.
К 1890 году появились три основные компонента телефонной сети: соединение клиент-станция коммутации, станции коммутации, соединения между станциями комму-тации.. Естественно эти три компонента постоянно совершенствовались, но в основных своих чертах они остались все эти 100 лет такими, как их создал Белл.
Структура современного соединения при звонке показана на рис.
В настоящее время все шире используется цифровая передача. Она имеет ряд преимуществ перед аналоговой:
затухание и нарушение формы в цифровом случае не столь сильно как в аналоговом
при ретрансляции цифрового сигнала проще восстановить его изначальную форму, которая известна точно, чем в случае аналогового сигнала. При ретрансляции аналогового сигнала ошибка накапливается
цифровая передача более надежна в силу выше сказанного
по цифровой сети можно передавать и данные и голос и музыку одновременно и с большей скоростью.
Цифровая передача дешевле, так как не надо тратить большие усилия на восстановление формы сигнала.
Цифровую сеть проще эксплуатировать
Итак, современная сеть состоит из
локальных петель
магистралей (оптоволоконных или микроволновых)
станций коммутации
Локальная петля
На рис. показана организация петли. Как видно из рисунка при передаче данных приходится четыре раза их преобразовывать из цифровой формы в аналоговую и обратно. Несмотря на то, что между станциями коммутации передача осуществляется в цифровой форме в петле она аналоговая. Похоже что она останется таковой в ближайшие 20 лет в силу очень больших затрат на переоборудование.
Идея создания системы связи на основе отражающего объекта, расположенного высоко над землей, давно витала в головах исследователей. Вначале пытались использовать металлизированный воздушный шар, воздушные плотные массы и т.д. и т.п. Однако, сигнал возвращался настолько слабым, что практическое использование такой системы было исключено. Первый спутник связи был запущен в СССР в 1962 году. Основное его отличие от того что предпринималось ранее - он усиливал сигнал, прежде чем отправить его назад на землю.
Спутник связи имеет несколько приемопередатчиков - транспондеров. Каждый транспондер слушает свою часть спектра, усиливает полученный сигнал и передает его обратно на землю в нужном направлении, на нужной частоте, отличной от частоты приема, чтобы избежать интерференции с принимаемым сигналом. Возвращаемый луч может быть по желанию либо широким, покрывая большую территорию, либо наоборот узко направленным.
Геостационарные спутники.
Согласно 3-му закону Кеплера период вращения спутника пропорционален 3/2 степени орбитального радиуса. На высоте примерно 36000 км над экватором период спутника будет равен 24 часа. Такой спутник наблюдателю на экваторе будет казаться неподвижным. Такая неподвижность очень большое достоинство, так как в противном случае пришлось бы делать сложные антенные системы.
В силу интерференции волн неразумно было бы размещать такие спутники ближе чем 2 градуса экваториальной плоскости. Однако, если спутники работают на разной частоте, то это возможно. Таким образом, в одно и тоже время на экваториальной орбите может находится не более 180 спутников, работающих на одной и той же частоте. Так как часть из этих орбит зарезервирована не только для целей связи, то их на самом деле меньше.
Обычно спутник связи имеет 12-20 транспондеров с пропускной способностью 36-50 Мгц каждый. 50 Мbps транспондер может быть использован для передачи 50 Mbps потока данных и 800 64Kbps телефонных разговоров. Можно по-разному поляризовать сигналы так, что два транспондера смогут использовать одну и ту же частоту.
Первые спутники имели один широкий луч. Современные имеют несколько относительно узких луча, пятно которых охватывает несколько сот километров.
Относительно новой технологией является технология малых антенн, называемых VSAT - Very Small Aperture Terminals - терминалы с очень маленькой апертурой. Эти маленькие терминалы имеют антенну в 1 метр, способную излучать сигнал мощностью в 1 ватт. Они способны передавать данные со скоростью примерно 19.2 Kbps и принимать - 512 Kbps. Из-за малой мощности эти терминалы не могут взаимодействовать напрямую, но прекрасно это могут через специальный спутниковый хаб. Это компромисс - задержка в передачи за низкую стоимость передачи.
Спутниковые системы связи имеют существенные отличия от наземных систем точка-точка. Несмотря на то, что сигнал распространяется со скоростью света, задержка велика - 250-300 mсек, против 3-5сек/км на коаксиале, оптоволокне и т.д.
Спутниковые системы принципиально вещательного типа. Для некоторых приложений это очень важно. Стоимость передачи не зависит скольким получателям сообщение предназначено. Однако, проблема безопасности передаваемой информации здесь требует особого внимания - все слышат все, что передается. Выход - только шифрование.
Стоимость передачи не зависит от расстояния.
Этот способ передачи имеет очень низкий коэффициент ошибок при передаче.
Низкоорбитальные спутники
Изначально низко летящие спутники серьезно не рассматривались. Слишком быстро они проносились над определенным местом. В 1990 компания Моторола обратилась с проектом системы низко летящих спутников. Идея была очень проста: когда один спутник исчезал, подлетал другой, так что передача не прерывалась. Компания подсчитала, что потребуется 77 спутников на высоте 750 км. Позднее, уточнив, это число сократилось до 66. Этот проект получил название Иридиум ( 77 элемент - Иридий).
Основной задачей этого проекта обеспечить связь с наземными средствами, даже портативными, во всем мире. Этот проект вызвал ожесточенную конкуренцию со стороны других компаний. Все захотели строить низколетящие спутниковые системы. Было предложено множество других проектов, но все они похожи на Иридиум. Поэтому мы рассмотрим его. Надо отметить что этот проект непосредственно конкурирует с РСS/PCN сотовыми системами и, в случае успеха, делает их не столь необходимыми.
По оценкам компании Моторола стоимость проекта не превысит $3 с клиента за минуту. Это недорого и наверняка найдет сбыт. Однако, это вызовет жесткую конкуренцию со стороны сотовой телефонной связи.
При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды.
В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса — перепадом потенциала определенного направления.
Требования к методам цифрового кодирования
При использовании прямоугольных импульсов для передачи дискретной информации необходимо выбрать такой способ кодирования, который одновременно достигал бы нескольких целей:
• имел при одной и той же битовой скорости наименьшую ширину спектра результирующего сигнала;
• обеспечивал синхронизацию между передатчиком и приемником;
• обладал способностью распознавать ошибки;
• обладал низкой стоимостью реализации.
Более узкий спектр сигналов позволяет на одной и той же линии (с одной и той же полосой пропускания) добиваться более высокой скорости передачи данных. Кроме того, часто к спектру сигнала предъявляется требование отсутствия постоянной составляющей, то есть наличия постоянного тока между передатчиком и приемником. В частности, применение различных трансформаторных схем гальванической развязки препятствует прохождению постоянного тока.
Синхронизация передатчика и приемника нужна для того, чтобы приемник точно знал, в какой момент времени необходимо считывать новую информацию с линии связи. Эта проблема в сетях решается сложнее, чем при обмене данными между близко расположенными устройствами, например между блоками внутри компьютера или же между компьютером и принтером. На небольших расстояниях хорошо работает схема, основанная на отдельной тактирующей линии связи (рис), так что информация снимается с линии данных только в момент прихода тактового импульса. В сетях использование этой схемы вызывает трудности из-за неоднородности характеристик проводников в кабелях. На больших расстояниях неравномерность скорости распространения сигнала может привести к тому, что тактовый импульс придет настолько позже или раньше соответствующего сигнала данных, что бит данных будет пропущен или считан повторно. Другой причиной, по которой в сетях отказываются от использования тактирующих импульсов, является экономия проводников в дорогостоящих кабелях.
Поэтому в сетях применяются так называемые самосинхронизирующиеся коды, сигналы которых несут для передатчика указания о том, в какой момент времени нужно осуществлять распознавание очередного бита (или нескольких бит, если код ориентирован более чем на два состояния сигнала). Любой резкий перепад сигнала — так называемый фронт — может служить хорошим указанием для синхронизации приемника с передатчиком.
При использовании синусоид в качестве несущего сигнала результирующий код обладает свойством самосинхронизации, так как изменение амплитуды несущей частоты дает возможность приемнику определить момент появления входного кода.
Распознавание и коррекцию искаженных данных сложно осуществить средствами физического уровня, поэтому чаще всего эту работу берут на себя протоколы, лежащие выше: канальный, сетевой, транспортный или прикладной. С другой стороны, распознавание ошибок на физическом уровне экономит время, так как приемник не ждет полного помещения кадра в буфер, а отбраковывает его сразу при распознавании ошибочных бит внутри кадра.
Требования, предъявляемые к методам кодирования, являются взаимно противоречивыми, поэтому каждый из рассматриваемых ниже популярных методов цифрового кодирования обладает своими преимуществами и своими недостатками по сравнению с другими.
Потенциальный код без возвращения к нулю
На рис. 2.16, а показан уже упомянутый ранее метод потенциального кодирования, называемый также кодированием без возвращения к нулю (Non Return to Zero, NRZ). Последнее название отражает то обстоятельство, что при передаче последовательности единиц сигнал не возвращается к нулю в течение такта (как мы увидим ниже, в других методах кодирования возврат к нулю в этом случае происходит). Метод NRZ прост в реализации, обладает хорошей распознаваемостью ошибок (из-за двух резко отличающихся потенциалов), но не обладает свойством самосинхронизации. При передаче длинной последовательности единиц или нулей сигнал на линии не изменяется, поэтому приемник лишен возможности определять по входному сигналу моменты времени, когда нужно в очередной раз считывать данные. Даже при наличии высокоточного тактового генератора приемник может ошибиться с моментом съема данных, так как частоты двух генераторов никогда не бывают полностью идентичными. Поэтому при высоких скоростях обмена данными и длинных последовательностях единиц или нулей небольшое рассогласование тактовых частот может привести к ошибке в целый такт и, соответственно, считыванию некорректного значения бита.
Другим серьезным недостатком метода NRZ является наличие низкочастотной составляющей, которая приближается к нулю при передаче длинных последовательностей единиц или нулей. Из-за этого многие каналы связи, не обеспечивающие прямого гальванического соединения между приемником и источником, этот вид кодирования не поддерживают. В результате в чистом виде код NRZ в сетях не используется. Тем не менее используются его различные модификации, в которых устраняют как плохую самосинхронизацию кода NRZ, так и наличие постоянной составляющей. Привлекательность кода NRZ, из-за которой имеет смысл заняться его улучшением, состоит в достаточно низкой частоте основной гармоники fo, которая равна N/2 Гц, как это было показано в предыдущем разделе. У других методов кодирования, например манчестерского, основная гармоника имеет более высокую частоту.
Информация о работе Лекции по "Клиент - серверный информационные технологии"