Анализ и прогнозирование структуры ВВП

Автор: Пользователь скрыл имя, 15 Января 2012 в 12:18, курсовая работа

Описание работы

Целью курсовой работы является прогнозирование статистики ВВП, на основе применения различных экономических методов прогнозирования и планирования.
Для достижения поставленной цели в курсовой работе были рассмотрены и решены следующие задачи:
1. Изучить сущность и основные принципы статистической зависимости показателей ВВП и их влияния на экономику в целом.
2. Выявить особенности прогнозирования и планирования данной сферы экономической деятельности;
3. Сущность прогнозирования и планирования, классификация прогнозов и объектов прогнозирования;

Содержание

ВВЕДЕНИЕ ………………………………………………………………….. 3
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДОВ
АНАЛИЗА ВВП………………………………………………..………….. 6
1.1. Общая характеристика валового внутреннего продук-та……………………………………………………………………….. 6
1.2. Методы расчёта ВВП ……………………………………………….. 6
1.3. Актуальность разработки системы прогнозирования ВВП.……………………………. …………………………….……….. 8
2. МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ .……………………………. 10
2.1. Общая характеристика методов прогнозирования……………….. 10
2.2. Статистические методы прогнозирования………………..……….. 11
2.2.1. Простейшие методы прогнозирования……………………... 11
2.2.2. Современные статистические методы прогнозирования..... 13
2.2.3. Планирование и прогнозирование ВВП …………………... 15
3. МЕТОДЫ ПРОГНОЗИРОВАНИЯ МАКРОЭКОНОМИЧЕСКИХ ПОКА-ЗАТЕЛЕЙ………………………………………………………….... 17
4. ПРАКТИЧЕСКАЯ ЧАСТЬ …………………………………………….... 20
ЗАКЛЮЧЕНИЕ …………………………………………………………….... 10
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ …………………………….. 10

Работа содержит 1 файл

курсовик РФ.docx

— 328.04 Кб (Скачать)
    1. Актуальность разработки системы прогнозирования ВВП

    Проведение  успешной экономической политики зависит  от достоверности прогноза основных макроэкономических показателей. Одним из таких показателей является валовой внутренний продукт.

    ВВП - показатель общего экономического состояния  страны, рыночная стоимость предназначенных  для конечного использования   товаров и услуг, произведенных на территории данной страны за определенный период времени и отражающий реальный вклад предприятий в создание конкретных продуктов, т.е. заработную плату, прибыль, амортизацию, процент за кредит и т.д.

    Предметом изучения ВВП являются экономические  единицы – резиденты, производящие товары и услуги для конечного пользования за определенный период. 

    Показатель  ВВП имеет очень важное значение для экономики в целом. Он:

    -       используется для характеристики результатов производства, уровня экономического развития, темпов экономического роста, анализа производительности труда в экономике;

    -       дает представление об общем материальном благосостоянии нации, так как чем выше уровень производства, тем выше благосостояние страны;

    -       свидетельствует об уровне развития экономики;

    -        используется при расчетах минимальной заработной платы, будущих налоговых поступлений и других важных показателей.  

     Очень часто этот показатель используется в сочетании с другими показателями, например, если анализируется отношение дефицита государственного бюджета к ВВП.

  1. МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ

    2.1. Общая  характеристика методов прогнозирования  

     Для рассмотрения выделим следующие  методы статистического прогнозирования:

     Экстраполяция по скользящей средней - может применяться для целей краткосрочного прогнозирования.

     Необходимость применения скользящей средней вызывается следующими обстоятельствами. Бывают случаи, когда имеющиеся данные динамического ряда не позволяют обнаруживать какую-либо тенденцию развития (тренд) того или иного процесса (из-за случайных и периодических колебаний исходных данных). В таких случаях для лучшего выявления тенденции прибегают к методу скользящей средней.

     Метод скользящей средней состоит в  замене фактических уровней динамического ряда расчетными, имеющими значительно меньшую колеблемость, чем исходные данные. При этом средняя рассчитывается по группам данных за определенный интервал времени, причем каждая последующая группа образуется со сдвигом на один год (месяц). В результате подобной операции первоначальные колебания динамического ряда сглаживаются, поэтому и операция называется сглаживанием рядов динамики (основная тенденция развития выражается при этом уже в виде некоторой плавной линии).

     Метод скользящей средней называется так  потому, что при вычислении средние как бы скользят от одного периода к другому; с каждым новым шагом средняя как бы обновляется, впитывая в себя новую информацию о фактически реализуемом процессе.  

    2.2. Статистические методы прогнозирования

    Статистические методы прогнозирования — научная и учебная дисциплина, к основным задачам которой относятся разработка, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных; развитие теории и практики вероятностно-статистического моделирования экспертных методов прогнозирования; методов прогнозирования в условиях риска и комбинированных методов прогнозирования с использованием совместно экономико-математических и эконометрических (как математико-статистических, так и экспертных) моделей. Научной базой статистических методов прогнозирования является прикладная статистика и теория принятия решений.

    2.2.1. Простейшие методы прогнозирования

    Простейшие  методы восстановления используемых для  прогнозирования зависимостей исходят  из заданного временного ряда, т. е. функции, определённой в конечном числе точек на оси времени. Временной ряд при этом часто рассматривается в рамках той или иной вероятностной модели, вводятся другие факторы (независимые переменные), помимо времени, например, объем денежной массы. Временной ряд может быть многомерным. Основные решаемые задачи — интерполяция и экстраполяция. Метод наименьших квадратов в простейшем случае (линейная функция от одного фактора) был разработан К. Гауссом в 1794—1795 гг. Могут оказаться полезными предварительные преобразования переменных, например, логарифмирование. Наиболее часто используется метод наименьших квадратов при нескольких факторах. Метод наименьших модулей, сплайны и другие методы экстраполяции применяются реже, хотя их статистические свойства зачастую лучше.

    Оценивание  точности прогноза (в частности, с  помощью доверительных интервалов) — необходимая часть процедуры прогнозирования. Обычно используют вероятностно-статистические модели восстановления зависимости, например, строят наилучший прогноз по методу максимального правдоподобия. Разработаны параметрические (обычно на основе модели нормальных ошибок) и непараметрические оценки точности прогноза и доверительные границы для него (на основе Центральной Предельной Теоремы теории вероятностей). Применяются также эвристические приемы, не основанные на вероятностно-статистической теории: метод скользящих средних, метод экспоненциального сглаживания.

    Многомерная регрессия, в том числе с использованием непараметрических оценок плотности распределения — основной на настоящий момент статистический аппарат прогнозирования. Нереалистическое предположение о нормальности погрешностей измерений и отклонений от линии (поверхности) регрессии использовать не обязательно; однако для отказа от предположения нормальности необходимо опереться на иной математический аппарат, основанный на многомерной Центральной Предельной Теореме теории вероятностей, технологии линеаризации и наследования сходимости [4]. Он позволяет проводить точечное и интервальное оценивание параметров, проверять значимость их отличия от 0 в непараметрической постановке, строить доверительные границы для прогноза.

    Весьма  важна проблема проверки адекватности модели, а также проблема отбора факторов. Априорный список факторов, оказывающих влияние на отклик, обычно весьма обширен, желательно его сократить, и крупное направление современных исследований посвящено методам отбора «информативного множества признаков». Однако эта проблема пока еще окончательно не решена. Проявляются необычные эффекты. Так, установлено, что обычно используемые оценки степени полинома имеют в асимптотике геометрическое распределение . Перспективны непараметрические методы оценивания плотности вероятности и их применения для восстановления регрессионной зависимости произвольного вида. Наиболее общие результаты в этой области получены с помощью подходов статистики нечисловых данных.

    2.2.2. Современные статистические методы  прогнозирования

    К современным статистическим методам  прогнозирования относятся также  модели авторегрессии, модель Бокса-Дженкинса, системы эконометрических уравнений, основанные как на параметрических, так и на непараметрических подходах.

    Для установления возможности применения асимптотических результатов при конечных (т. н. «малых») объемах выборок полезны компьютерные статистические технологии. Они позволяют также строить различные имитационные модели. Отметим полезность методов размножения данных (бутстреп-методов). Системы прогнозирования с интенсивным использованием компьютеров объединяют различные методы прогнозирования в рамках единого автоматизированного рабочего места прогнозиста.

    Прогнозирование на основе данных, имеющих нечисловую природу, в частности, прогнозирование  качественных признаков основано на результатах статистики нечисловых данных. Весьма перспективными для прогнозирования представляются регрессионный анализ на основе интервальных данных, включающий, в частности, определение и расчет нотны и рационального объема выборки, а также регрессионный анализ нечетких данных. Общая постановка регрессионного анализа в рамках статистики нечисловых данных и ее частные случаи — дисперсионный анализ и дискриминантный анализ (распознавание образов с учителем), давая единый подход к формально различным методам, полезна при программной реализации современных статистических методов прогнозирования.

    Основными процедурами обработки прогностических  экспертных оценок являются проверка согласованности, кластер-анализ и нахождение группового мнения. Проверка согласованности мнений экспертов, выраженных ранжировками, проводится с помощью коэффициентов ранговой корреляции Кендалла и Спирмена, коэффициента ранговой конкордации Кендалла и Бэбингтона Смита. Используются параметрические модели парных сравнений — Терстоуна, Бредли-Терри-Льюса — и непараметрические модели теории люсианов . Полезна процедура согласования ранжировок и классификаций путем построения согласующих бинарных отношений. При отсутствии согласованности разбиение мнений экспертов на группы сходных между собой проводят методом ближайшего соседа или другими методами кластерного анализа (автоматического построения классификаций, распознавания образов без учителя). Классификация люсианов осуществляется на основе вероятностно-статистической модели.

    Используют  различные методы построения итогового  мнения комиссии экспертов. Своей простотой выделяются методы средних арифметических и медиан рангов. Компьютерное моделирование  позволило установить ряд свойств медианы Кемени, часто рекомендуемой для использования в качестве итогового (обобщенного, среднего) мнения комиссии экспертов. Интерпретация закона больших чисел для нечисловых данных в терминах теории экспертного опроса такова: итоговое мнение устойчиво, то есть мало меняется при изменении состава экспертной комиссии, и при росте числа экспертов приближается к «истине». При этом в соответствии с принятым подходом предполагается, что ответы экспертов можно рассматривать как результаты измерений с ошибками, все они — независимые одинаково распределенные случайные элементы, вероятность принятия определенного значения убывает по мере удаления от некоторого центра — «истины», а общее число экспертов достаточно велико.

    Многочисленны примеры ситуаций, связанных с  социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений в условиях неопределенности (риска). Из-за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения оценок экспертов.

    2.2.3. Прогнозирование рисков.

    В конкретных задачах прогнозирования  необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска, в частности, построить деревья причин (в другой терминологии, деревья отказов) и деревья последствий (деревья событий). Центральной задачей является построение групповых и обобщенных показателей, например, показателей конкурентоспособности и качества. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов.

     2.2.3. Планирование и прогнозирование  ВВП

       Рассмотрим методы планирования и прогнозирования объёма и темпов изменения ВВП (ВНП), т.к. эти показатели являются индикаторами экономики:

     Методы  экстраполяции - предполагают исследование возможных тенденций изменения рядов динамики с помощью различных временных функций - трендовые модели - это модель динамики производства, описанная статистической совокупностью (динамикой фактического ряда). При сохранении условий экономического развития в будущем временные функции могут быть экстраполированы и найдены прогнозные оценки.

     Экстраполяция - от латинского «extra» - «вне», «сверх», «дополнительно»; и «polio» - «приглаживаю», «изменяю» - метод заключается в распространении выводов полученных из наблюдения над одной частью явления на другую.

     Тренд - аналитическое или графическое  представление изменения переменной во времени.

     Метод дефляции - осуществляется через индексы  цен и структуру производства. Для прогнозирования используется методика МВФ, в основе которой лежит макромодель прогноза ВВП на основе оценки изменения объёмов и инфляции. На первом этапе рассчитывается реальный ВВП по сельскому хозяйству и несельскохозяйственным отраслям (такое деление связано с сезонностью сельского хозяйства, в РБ соотношение 80 % к 20 %). Для этого определяются темпы изменения объёма производства по кварталам, на их основе находятся годовые темпы изменения, а затем определяется реальный ВВП на прогнозируемый период.

Информация о работе Анализ и прогнозирование структуры ВВП