Трансформаторы

Автор: Пользователь скрыл имя, 04 Марта 2013 в 07:38, реферат

Описание работы

Трансформа́тор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока обычно другого напряжения при неизменной частоте и без существенных потерь мощности.

Содержание

Введение 2
1. История 2
2. Виды трансформаторов 3
3. Конструкция трансформатора 6
4.Базовые принципы действия трансформатора 10
5. Обозначение на схемах 14
6. Применение трансформаторов 14

Работа содержит 1 файл

Реферат.docx

— 113.93 Кб (Скачать)

Министерство науки и образования  Российской Федерации

Московский государственный технологический  университет

«СТАНКИН»

 

 

 

 

Кафедра «Электротехника, электроника и автоматика»

 

Дисциплина «Электротехника и  электроника»

 

Реферат

по теме

«Трансформаторы»

 

 

 

 

Выполнил: студент

группы М-4-5

 

(Дата)

 

(Подпись)

Калашникова Н.А.

Проверил:

Преподаватель

 

(Дата)

 

(Подпись)

Евстафиева С.В. 


 

 

 

Москва 2013

Оглавление

Введение 2

1. История 2

2. Виды трансформаторов 3

3. Конструкция трансформатора 6

4.Базовые принципы действия трансформатора 10

5. Обозначение на схемах 14

6. Применение трансформаторов 14

Введение

 

Трансформа́тор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока обычно другого напряжения при неизменной частоте и без существенных потерь мощности.

Трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток, охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито-мягкого материала.

1. История

 

Для создания трансформаторов  необходимо было изучение свойств материалов: неметаллических, металлических и  магнитных, создания их теории.

Столетов Александр  Григорьевич (профессор МУ) сделал первые шаги в этом направлении - обнаружил петлю гистерезиса и доменную структуру ферромагнетика . Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение  будущего трансформатора впервые появилось  в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французский механик  Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с  замкнутыми сердечниками были созданы  в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон.

С изобретением трансформатора возник технический интерес к  переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока, построил первый трёхфазный асинхронный двигатель и первый трёхфазный трансформатор. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км трёхфазный генератор имел мощность 230 КВт при напряжении 95 В.

1928 год можно считать  началом производства силовых  трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников  был сделан в начале 30-х годов XX в, когда американский металлург  Норман П. Гросс установил, что при комбинированном воздействии проката и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

2. Виды трансформаторов

 

2.1 Силовой трансформатор

 

Силовой трансформатор — трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии.

 

2.2 Автотрансформатор

 

Автотрансформа́тор — вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую. Обмотка автотрансформатора имеет несколько выводов (как минимум 3), подключаясь к которым, можно получать разные напряжения. Преимуществом автотрансформатора является более высокий КПД, поскольку лишь часть мощности подвергается преобразованию — это особенно существенно, когда входное и выходное напряжения отличаются незначительно. Недостатком является отсутствие электрической изоляции (гальванической развязки) между первичной и вторичной цепью. В промышленных сетях, где наличие заземления нулевого провода обязательно, этот фактор роли не играет. Зато существенным является меньший расход стали для сердечника, меди для обмоток, меньший вес и габариты, и в итоге — меньшая стоимость. Особенно эффективен автотрансформатор в случаях, когда необходимо получить вторичное напряжение, не сильно отличающееся от первичного.

 

2.3 Трансформатор тока

 

Трансформа́тор то́ка — трансформатор, питающийся от источника тока. Типичное применение - для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации. Номинальное значение тока вторичной обмотки 1А , 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации.

 

2.4 Трансформатор напряжения

 

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях и цепях РЗиА. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

 

2.5 Импульсный трансформатор

 

Импульсный трансформатор — трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса. Основное применение заключается в передаче прямоугольного электрического импульса (максимально крутой фронт и срез, относительно постоянная амплитуда). Он служит для трансформации кратковременных видеоимпульсов напряжения, обычно периодически повторяющихся с высокой скважностью. В большинстве случаев основное требование, предъявляемое к ИТ заключается в неискажённой передаче формы трансформируемых импульсов напряжения; при воздействии на вход ИТ напряжения той или иной формы на выходе желательно получить импульс напряжения той же самой формы, но, быть может, иной амплитуды или другой полярности.

 

2.6 Разделительный трансформатор

 

Разделительный трансформатор — трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками. Силовые разделительные трансформаторы предназначены для повышения безопасности электросетей, при случайных одновременных прикасаний к земле и токоведущим частям или нетоковедущим частям, которые могут оказаться под напряжением в случае повреждения изоляции. Сигнальные разделительные трансформаторы обеспечивают гальваническую развязку электрических цепей.

 

2.7 Пик-трансформатор

 

Пик-трансформатор — трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

В практичной конструкции трансформатора производитель выбирает между двумя различными базовыми концепциями.

Любая из этих концепций  не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в  процессе их изготовления. Каждый производитель  выбирает концепцию, которую он считает  наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки  стержневого типа заключают в  себе сердечник, сердечник броневого  типа заключает в себе обмотки. Если смотреть на активный компонент (т.e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит  в том, что ось обмоток стержневого  типа, как правило, имеет вертикальное положение, в то время как в  броневой конструкции она может  быть горизонтальной или вертикальной.

3. Конструкция трансформатора

 

Основными частями конструкции трансформатора являются:

магнитная система (магнитопровод)

обмотки

система охлаждения

 

3.1 Магнитная система (магнитопровод)

 

Магнитная система (магнитопровод) трансформатора — комплект элементов (чаще всего пластин) электротехнической стали или другого ферромагнитного материала, собранных в определённой геометрической форме, предназначенный для локализации в нём основного магнитного поля трансформатора. Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется — стержень.Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется — ярмо.

В зависимости от пространственного  расположения стержней, выделяют:

Плоская магнитная система — магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости .

Пространственная магнитная  система — магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях.

Симметричная магнитная  система — магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней.

Несимметричная магнитная  система — магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня .

 

3.2 Обмотки

 

Основным элементом обмотки  является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Проводник обмотки в силовых  трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади проводника проводник может  быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.

Каждая жила изолируется  при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных  и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных  жилы в общей бумажной изоляции называются кабелем. Транспонированный кабель применяемый в обмотке трансформатора.

Особым видом проводника обмотки является непрерывно транспонированный  кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв  эмалевого лака, расположенных в  осевом положении друг к другу, как  показано на рисунке. Непрерывно транспонированный  кабель получается путём перемещения  внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции.

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной  несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в  несколько слоёв для получения  требуемой общей толщины.

 

3.3 Дисковая обмотка

 

Обмотки разделяют по:

Назначению

Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.

Регулирующие — при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.

Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.

Исполнению

Рядовая обмотка — витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.

Винтовая обмотка — винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.

Информация о работе Трансформаторы