Шпоргалка по "Физике"

Автор: Пользователь скрыл имя, 10 Марта 2013 в 16:39, шпаргалка

Описание работы

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Работа содержит 1 файл

физика шпоры 1-й сем.doc

— 1.32 Мб (Скачать)

Из формулы (51.1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии DU=0. Тогда, согласно первому началу термодинамики,

A=Q,

т. е.   вечный   двигатель   первого   рода —

периодически действующий  двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия,— невозможен (одна из формулировок первого начала термодинамики).

 

 

 

 

 

 

 

 

 

 

 

 

37. Теплоемкость

Удельная теплоемкость вещества величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:

Единица удельной теплоемкости — джоуль на килограмм-кельвин (Дж/(кг•К)).

Молярная теплоемкость— величина, равная количеству теплоты, необходимому для нагревания 1 моля вещества на 1 К:

где v = m/M — количество вещества, выражающее число молей.

Единица молярной теплоемкости — джоуль на моль-кельвин (Дж/(моль•К)).

Удельная теплоемкость с связана с молярной Сm соотношением

Ст = сМ, (53.2)

где М — молярная масса вещества.

Различают теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным.

Запишем выражение первого  начала термодинамики (51.2) для 1 моля газа с учетом формул (52.1) и (53.1):

CmdT = dUm + pdVm. (53.3)

Если газ нагревается  при постоянном объеме, то работа внешних  сил равна нулю (см. (52.1)) и сообщаемая газу извне теплота идет только на увеличение его внутренней энергии:

т. е. молярная теплоемкость газа при постоянном объеме Сv равна изменению внутренней энергии 1 моля газа при повышении его температуры на 1 К. Согласно формуле (50.1),

тогда

Cv = iR/2. (53.5)

Если газ нагревается  при постоянном давлении, то выражение (53.3) можно записать в виде

Учитывая, что dUm/dT не зависит от  вида процесса (внутренняя энергия идеального газа не зависит ни от р, ни от V, а определяется лишь температурой Т) и всегда равна Сv (см. (53.4)); продифференцировав уравнение Клапейрона — Менделеева pVm=RT (42.4) по T(p=const), получим

Cp = Cv + R. (53.6)

Выражение (53.6) называется уравнением Майера; оно показывает, что Ср всегда больше Сv на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа.

Использовав (53.5), выражение (53.6) можно записать в виде

При рассмотрении термодинамических  процессов важно знать характерное  для каждого газа отношение Ср к Cv:

g=Cp/Cv=(i+2)/i. (53.8)

 

 

38. Теплоёмкость  одноатомных и много атомных  молекул

Из формул (53.5) и (53.7) следует, что молярные теплоемкости определяются лишь числом степеней свободы и не зависят от температуры. Это утверждение молекулярно-кинетической теории справедливо в довольно широком интервале температур лишь для одноатомных газов. Уже у двухатомных газов число степеней свободы, проявляющееся в теплоемкости, зависит от температуры. Молекула двухатомного газа обладает тремя поступательными, двумя вращательными и одной колебательной степенями свободы.

 

По закону равномерного распределения энергии по степеням свободы (см. § 50), для комнатных температур Cv = 7/2R. Из качественной экспериментальной зависимости молярной теплоемкости Сv водорода (рис. 80) следует, что Cv зависит от температуры: при низкой температуре (»50 К) Cv=3/2R, при комнатной — Cv=5/2R (вместо расчетных 7/2R!) и очень высокой — Сv=7/2/R. Это можно объяснить, предположив, что при низких температурах наблюдается только поступательное движение молекул, при комнатных — добавляется их вращение, а при высоких — к этим двум видам движения добавляются еще колебания молекул.

Расхождение теории и  эксперимента нетрудно объяснить. Дело в том, что при вычислении теплоемкости надо учитывать квантование энергии вращения и колебаний молекул (возможны не любые вращательные и колебательные энергии, а лишь определенный дискретный ряд значений энергий). Если энергия теплового движения недостаточна, например, для возбуждения колебаний, то эти колебания не вносят своего вклада в теплоемкость (соответствующая степень свободы «замораживается» — к ней неприменим закон равнораспределения энергии). Этим объясняется, что теплоемкость моля двухатомного газа — водорода — при комнатной температуре равна 5/2 R вместо 7/2 R. Аналогично можно объяснить уменьшение теплоемкости при низкой температуре («замораживаются» вращательные степени свободы) и увеличение при высокой («возбуждаются» колебательные степени свободы).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39. Изохорный  процесс (V = const).

Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.

dA=pdV = 0.

Как уже указывалось  в § 53, из первого начала термодинамики (dQ=dU+dA) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:

dQ =dU

Согласно формуле (53.4), dUm = CvdT.

Тогда для произвольной массы газа получим

 

Изобарный процесс (р=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V

 

 

. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V1 до V2 равна

и определяется площадью прямоугольника, выполненного в цвете на рис. 82. Если использовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то

откуда

Тогда выражение  (54.2) для работы изобарного расширения примет вид

Из этого выражения  вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.

В изобарном процессе при сообщении газу массой от количества теплоты

его внутренняя энергия  возрастает на величину (согласно формуле (53.4))

При этом газ совершит работу, определяемую выражением  (54.3).

 

 

40. Изотермический  процесс

Изотермический  процесс (T=const). Как уже указывалось в § 41, изотермический процесс описывается законом Бойля — Мариотта:

pV=const.

Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:

Так как при T=const внутренняя энергия идеального газа не изменяется:

то из первого начала термодинамики (dQ =dU+dA) следует, что для изотермического процесса

dQ=dA,

т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

Следовательно, для того чтобы при работе расширения температура не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

 

 

 

 

 

 

 

 

 

 

41. Адиабатический  процесс. 

Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ=0) между системой и окружающей средой. К адиабатическим процессам можно от-

нести все быстропротекающие  процессы. Например, адиабатическим процессом  можно считать процесс распространения  звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.

Из первого начала термодинамики (dQ=dU+dA) для адиабатического процесса следует, что

dA=-dU, (55.1)

т. е. внешняя работа совершается  за счет изменения внутренней энергии  системы.

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

Продифференцировав   уравнение   состояния для идеального газа pV=(m/M)RT, получим

Исключим из   (55.2)   и   (55.3)  температуру Т:

Разделив переменные и учитывая, что Срv =g (см. (53.8)), найдем

dp/p=-gdV/V.

Интегрируя это уравнение  в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению

p2/pl=(V1/V2)g.

или

p1vg1 = p2vg2.

Так как состояния 1 и 2 выбраны произвольно, то можно записать

рVg=const. (55.4)

Полученное выражение  есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью уравнения Клапейрона — Менделеева

соответственно давление или объем:

Выражения (55.4) — (55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина (см. (53.8) и (53.2))

называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i = 3, g=1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, g=1,4. Значения g, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Диаграмма адиабатического  процесса (адиабата) в координатах р, V изображается гиперболой (рис.83). На рисунке видно, что адиабата (pVg=const) более крута, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

 

 

Вычислим работу, совершаемую  газом в адиабатическом процессе. Запишем уравнение (55.2) в виде

Если газ адиабатически  расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расширении можно преобразовать к виду

Работа, совершаемая газом  при адиабатическом расширении 1—2 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

 

 

 

 

 

 

 

 

 

 

42. Круговой процесс (цикл). Обратимые и необратимые процессы

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (рис.84). Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1—2) и сжатия (2—1) газа. Работа расширения (определяется площадью фигуры 1a2V2V11) положительна (dV>0), работа сжатия (определяется площадью фигуры 2b1V1V22) отрицательна (dV<0), Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная работа (цикл протекает по часовой стрелке), то он называется прямым (рис. 84, а), если за цикл совершается отрицательная работа (цикл протекает против часовой стрелки), то он называется обратным (рис. 84,б).

Прямой цикл используется в тепловых двигателях — периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл

используется в холодильных машинах — периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового  процесса система возвращается в  исходное состояние и, следовательно, полное изменение внутренней энергии газа равно нулю. Поэтому первое начало термодинамики (51.1) для кругового процесса

Q=DU+A=A, (56.1)

т. е. работа, совершаемая  за цикл, равна количеству полученной извне теплоты. Однако в результате кругового процесса система может теплоту как получать, так и отдавать, поэтому

Q=Q1-Q2,

Информация о работе Шпоргалка по "Физике"