Шпоргалка по "Физике"

Автор: Пользователь скрыл имя, 10 Марта 2013 в 16:39, шпаргалка

Описание работы

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Работа содержит 1 файл

физика шпоры 1-й сем.doc

— 1.32 Мб (Скачать)

Третьей космической  скоростью v3 называют скорость, которую необходимо сообщить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей является сложной технической задачей. Ее первое теоретическое осуществление начато К. Э. Циолковским, им была выведена уже рассмотренная нами формула

 

 

 

 

 

 

 

 

 

 

12. Момент силы. Уравнение динамики вращательного  движения твердого тела

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F (рис. 25):

M = [rF].

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от г к F.

Модуль момента силы

M = Frsina= Fl, (18.1)

где a — угол между г и F; rsina =l — кратчайшее расстояние между линией действия силы и точкой О — плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина Мz, равная проекции на эту ось вектор а М момента силы, определенного относительно произвольной точки О данной оси 2 (рис.26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представля ется в виде вектора, совпадающего с осью:

Мz = [rF]z.

Найдем выражение для  работы при вращении тела (рис.27). Пусть  сила F приложена в точке В, находящейся от оси вращения на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds= rdj, и работа равна произведению проекции силы на направление смещения на величину смещения:

dA=Fsinardj. (18.2) Учитывая (18.1), можем записать dA=Mzdj,

где Frsina = Fl =Mz — момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличение его кинетической энергии:

dA = dT, но

Учитывая, что w=dj/dt, получим

Уравнение (18.3) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.

Можно показать, что если ось вращения совпадает с главной осью инерции (см. §20), проходящей через центр масс, то имеет место векторное равенство

где J — главный момент инерции тела (момент инерции относительно главной оси).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13. Момент инерции

При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерции системы (тела) относительно оси вращения называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения  масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой Л и радиусом R относительно его геометрической оси (рис.23). Разобьем


 

 

32

цилиндр на отдельные  полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним — r+dr. Момент инерции каждого полого цилиндра dJ = r2dm (так как dr<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r — плотность материала, то dm=r•2prhdr и dJ = 2prr3dr. Тогда момент инерции сплошного цилиндра

но  так   как   pR'2h — объем   цилиндра,  то его масса m = pR2hr, а момент инерции

J = 1/2R2.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями: J = Jc + ma2. (16.1)

Таблица  1

 

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

 

 

 

 

 

14. Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Значение момента импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно  твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой

скоростью   vi.   скорость vi;   и   импульс   mivi

перпендикулярны этому  радиусу, т. е. радиус является плечом вектора mivi. Поэтому можем записать, что момент импульса отдельной частицы

Liz = тiviri (19.1)

и направлен по оси  в сторону, определяемую правилом правого винта.

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя    формулу    (17.1)    vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен  произведению момента инерции тела относительно той же оси на угловую скорость.

Продифференцируем уравнение (19.2) по времени:

т. е.

dLz/dt= Mz

Это выражение — еще одна форма уравнения (закона) динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет  место векторное равенство

dL/dt= М. (19.3)

В замкнутой системе  момент внешних сил М=0 и dL/dt=0, откуда

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента  импульса — фундаментальный закон природы, Он связан со свойством симметрии пространства — его изотропностью,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. Кинематика  гармонических колебаний. 

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно но двум причинам: 1) колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; 2) различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колебания величины s описываются уравнением типа .

s=Acos(w0t+j),    (140.1)

где А - максимальное значение колеблющейся величины, называемое амплитудой колебаний, w0 круговая (циклическая) частотой, j - начальная фаза колебаний

в момент времени t=0, (w0t+j)— фаза колебаний в момент времени t. Так как косинус изменяется в пределах от +1 до -1, то s может, принимать значения от + А до -А.

Определенные состояния  системы, совершающей гармонические  колебания, повторяются через, промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение 2p, т. е.

w0(t+T)+j=(w0t +j)+2p,

откуда

T=2p/w0. (140.2)

Величина, обратная периоду  колебаний,

v=1/T, (140.3)

т. о. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (140.2) и (140.3), получим

w0=2pv.

Единица частоты — герц (Гц):1Гц — частота периодического процесса, при которой за 1 с совершается один цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющейся величины s (соответственно скорость и ускорение):

 

т. е. имеем гармонические  колебания с той же циклической  частотой. Амплитуды величин (140.4) и (140.5) соответственно равны Аw0 и Aw20. Фаза скорости (140.4) отличается от фазы величины (140.1) на π/2, а фаза ускорения (140.5) отличается от фазы величины (140.1) на p. Следовательно, в моменты времени, когда s=0,

ds/dt  приобретает   наибольшие   значения;

когда же s достигает максимального отрицательного значения, то d2s/dt2 приобретает

наибольшее положительное значение (рис. 198).

Из выражения (140.5) следует дифференциальное уравнение гармонических колебаний

d2s/dt2+w20s=0 ( 140.6)

(где учтено, что s=Acos(w0t+j)). Решением этого уравнения является выражение (140.1).

 

 

 

 

 

 

 

 

 

 

16. Динамика гармонических колебаний

Механические гармонические колебания

Пусть материальная точка  совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается уравнением, аналогичным уравнению (140.1), где s=x:

х=Аcos(w0t+j). (141.1)

Согласно выражениям (140.4) и (140.5), скорость v и ускорение а колеблющейся точки соответственно равны

Сила F=ma, действующая на колеблющуюся материальную точку массой т, с учетом (141.1) и (141.2) равна

F= -mw20x.

Следовательно, сила пропорциональна  смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия).

Кинетическая  энергия материальной точки, совершающей прямолинейные гармонические колебания, равна

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна

Сложив (141.3) и (141.5), получим  формулу для полной энергии:

Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.

Из формул (141.4) и (141.6) следует, что Т и П изменяются с частотой 2w0, т. е. с частотой, которая в два раза превышает частоту гармонического колебания.

 

 

222

На рис. 200 представлены графики зависимости х, Т и П от времени. Так как <sin2a>= <cos2aa>=1/2, то из формул (141.3), (141.5) и (141.7) следует, что <Т> = <П>=1/2E.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17. Гармонический осциллятор.

 

Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6):

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными; см. §146).

 

18. Затухающие  колебания

Рассмотрим свободные затухающие колебания — колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах,

а также омических  потерь и излучения электромагнитной энергии в электрических колебательных системах.

Закон затухающих колебаний  определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука), колебательный контур, индуктивность, емкость и сопротивление которого не зависят ни от тока в контуре, ни от напряжения. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.

Информация о работе Шпоргалка по "Физике"