Автор: Пользователь скрыл имя, 10 Марта 2013 в 16:39, шпаргалка
При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.
Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.
т. е. частота v колебаний, воспринимаемых приемником, увеличится в v/(v-vист) раз. В случаях 2 и 3, если vист<0 и vпр<0, знак будет обратным.
4. Источник и приемник движутся относительно друг друга. Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых источником:
причем верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления.
Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или приемник. Если направления скоростей vпр и vист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (159.1) надо брать их проекции на направление этой прямой.
27. Стоячие волны
Особым случаем интерференции являются стоячие волны — это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую фазу, а отсчет времени начнем с момента, когда фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид
Сложив эти уравнения и учитывая, что k= 2p/l (см. (154.3)), получим уравнение стоячей волны:
Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой Аст=|2Аcos(2pх/l)|, зависящей от координаты х рассматриваемой точки.
В точках среды, где
2px/l=±mp (m=0, 1, 2, ...), (157.3)
амплитуда колебаний достигает максимального значения, равного 2 А. В точках среды, где
2px/l=±(m+1/2)p (m=0,1,2,...),
(157.4)
амплитуда колебаний
обращается в нуль. Точки, в которых
амплитуда колебаний
Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов:
х0=±тl/2 (m=0, 1,2, ...), (157.5)
хузл=±(т+1/2)l/2 (m=0, 1, 2, ...).
(157.6)
Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны l/2. Расстояние между соседними пучностью и узлом стоячей волны равно l/4.
В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (157.2) стоячей волны аргумент косинуса не зависит от х). При переходе через узел множитель 2Аcos(2px/l) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на p, т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.
Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения получается пучность (рис. 222, а), если более плотная — узел (рис. 222, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противоположных направлений, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у границы колебания складываются с одинаковыми фазами — получается пучность.
Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. „Поэтому полная энергия результирующей стоячей волны, заклю
ченной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превращения кинетической энергии в потенциальную и обратно.
28. 29. Средняя скорость и поток молекул основное уравнение молекулярно-кинетической теории идеальных газов
Для вывода основного
уравнения молекулярно-
Необходимо, однако, учитывать, что реально молекулы движутся к площадке
DS под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул (1/6) движется вдоль данного направления в одну сторону, половина — в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6nDSvDt. При столкновении с площадкой эти молекулы передадут ей импульс
DР = 2m0v•1/6nDSvDt=1/3nm0v2DSDt.
Тогда давление газа, оказываемое им на стенку сосуда,
p=DP/(DtDS)=1/3nm0v2. (43.1)
Если газ в объеме V содержит N молекул,
движущихся со скоростями v1, v2, ..., vN, то
целесообразно рассматривать среднюю квадратичную скорость
характеризующую всю совокупность молекул газа.
Уравнение (43.1) с учетом (43.2) примет вид
р = 1/3пт0 <vкв>2. (43.3)
Выражение (43.3) называется основным уравнением молекулярно-кинетической теории идеальных газов. Точный расчет с учетом движения молекул по все-
возможным направлениям дает ту же формулу.
Учитывая, что n = N/V, получим
где Е — суммарная кинетическая энергия поступательного движения всех молекул газа.
Так как масса газа m =Nm0, то уравнение (43.4) можно переписать в виде
pV=1/3m<vкв>2.
Для одного моля газа т = М (М — молярная масса), поэтому
pVm=1/3M<vкв>2,
где Vm — молярный объем. С другой стороны, по уравнению Клапейрона — Менделеева, pVm=RT. Таким образом,
RT=1/3М <vкв>2, откуда
Так как М = m0NA, где m0—масса одной молекулы, а NА — постоянная Авогадро, то из уравнения (43.6) следует, что
где k = R/NA—постоянная Больцмана. Отсюда найдем, что при комнатной температуре молекулы кислорода имеют среднюю квадратичную скорость 480 м/с, водорода — 1900 м/с. При температуре жидкого гелия те же скорости будут соответственно 40 и 160 м/с.
Средняя кинетическая энергия поступательного движения одной молекулы идеального газа
<e0) =E/N = m0 <vкв>)2/2 = 3/2kT(43.8)
(использовали формулы
(43.5) и (43.7)) пропорциональна
т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа и формула (43.8) раскрывает молекулярно-кинетическое толкование температуры.
30 Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения
При выводе основного
уравнения молекулярно-
По молекулярно-кинетической теории, как бы ни изменялись скорости молекул при столкновениях, средняя квадратичная скорость молекул массой m0 в газе, находящемся в состоянии равновесия при Т = const, остается постоянной и равной <vкв> =Ö3kT/m0. Это объясняется тем, что в газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону. Этот закон теоретически выведен Дж. Максвеллом.
При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного теплового движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.
Закон Максвелла описывается некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на
малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) определяет относительное число молекул dN (v)/N, скорости которых лежат в интервале от v до v+dv, т. е.
откуда
f(v)=dN(v)/Ndv
Применяя методы теории вероятностей, Максвелл нашел функцию f(v) — закон для распределения молекул идеального газа по скоростям:
Из (44.1) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).
График функции (44.1) приведен на рис. 65. Так как при возрастании v множитель уменьшается быстрее, чем растет множитель v2, то функция f(v), начинаясь от нуля, достигает максимума при vв и затем асимптотически стремится к нулю. Кривая несимметрична относительно vв.
Относительное число молекул dN(v)/N, скорости которых лежат в интервале от v до v+dv, находится как площадь более светлой полоски на рис. 65. Площадь, ограниченная кривой распределения
и осью абсцисс, равна единице. Это означает, что функция f(v) удовлетворяет условию нормировки
Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (44.1) (постоянные множители опускаем) по аргументу v, приравняв результат нулю и используя условие для максимума выражения f(v):
Значения v=0 и v=¥ соответствуют минимумам выражения (44.1), а значение v, при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость vв:
Из формулы (44.2) следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 66) сместится вправо (значение наиболее вероятной скорости становится больше). Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться.
Средняя скорость молекулы <v> (средняя арифметическая скорость)
определяется по формуле
Подставляя сюда f(v) и интегрируя, получим
Скорости, характеризующие состояние газа: 1) наиболее вероятная vв=Ö2RT/М; 2) средняя <v>=Ö8RT/(pМ)=1,13vв; 3) средняя квадратичная <vкв> =Ö3RT/М =1,22vв (рис.65).