Принципы теоретической физики

Автор: Пользователь скрыл имя, 31 Марта 2010 в 02:26, Не определен

Описание работы

Разрешите, прежде всего, принести вам свою глубокую благодарность за оказанную услугу, наиболее ценную из тех, которую можно оказать такому человеку, как я. Избранием в вашу Академию вы меня освободили от волнений и забот службы и позволили полностью посвятить себя занятиям наукой. Заверяю вас в своем чувстве благодарности и настойчивости моих усилий, даже если плоды моих трудов покажутся вам неприметными.

Работа содержит 1 файл

Физика и реальность.doc

— 198.50 Кб (Скачать)

Эти категории  науки имеют большое практическое значение; кроме того, они создали, благодаря распространению их идей в мире математики, формальные вспомогательные орудия (уравнения в частных производных), которые необходимы для последующих попыток формулировки всех аспектов физики способом, отличающимся от ньютоновского своей новизной.

Эти два способа  приложения механики принадлежат к  так называемой “феноменологической” физике. Этот вид физики харак-

43

теризуется применением, насколько это возможно, весьма близких к опыту понятий; но именно вследствие этого приходится в значительной мере отказываться от единства фундамента. Теплота, электричество, свет описываются специальными функциями состояния и константами вещества, отличными от механических. Определение взаимной зависимости всех этих переменных было делом скорее эмпирическим. Многие современники Максвелла видели в таком представлении конечную цель физики, которая, думали они, может быть достигнута из опыта чисто индуктивным путем, на основе сравнительно тесного контакта используемых понятий и опыта. С точки зрения теории познания близко к этой позиции стояли Ст. Милль и Э. Мах.

По-моему, величайший подвиг механики Ньютона состоит  в том, что ее постоянное применение привело к выходу за рамки феноменологических представлений, особенно в области тепловых явлений. Это произошло в кинетической теории газов и, в более общем виде, в статистической механике. Первая объединила уравнение идеальных газов, вязкость, диффузию газов и установила логическую связь между явлениями, которые, с точки зрения прямого опыта, не имели абсолютно ничего общего.

Статистическая  механика дала механическую интерпретацию  идей и законов термодинамики  и открыла предел приложения ее понятий  и законов в классической теории теплоты. Кинетическая теория, которая намного обогнала феноменологическую физику в том, что касается логического единства своих основ, кроме того дала для истинных величин атомов и молекул определенные значения, которые получились различными независимыми методами и были, таким образом, установлены в областях, где они не могли подвергаться серьезному сомнению. Эти решающие успехи были достигнуты за счет согласования атомистических сущностей с материальными точками, т. е. сущностей, спекулятивный и конструктивный характер которых очевиден. Никто не может надеяться когда-либо “прямо воспринимать” атом. Законы, касающиеся переменных, непосредственно связанных с экспериментальными данными (например, температуры, давления, скорости), были выведены из основных идей путем сложных расчетов. Таким образом, физика (по крайней мере, часть ее), первоначально построенная феноменологически, была сведена, будучи основана на механике Ньютона для атомов и молекул, на основу, значительно более удаленную от прямого опыта, но зато более единого характера.

§ 3. Концепция поля

В объяснении оптических и электрических явлений механика Ньютона была намного менее удачлива, чем в вышеуказанных областях. Правда, в своей корпускулярной теории света Ньютон пытался сводить  свет к движению материальных точек.

44

Однако позже, когда явления поляризации, дифракции  и интерференции предписывали его  теории все более искусственные  видоизменения, волновая теория Гюйгенса восторжествовала над ней.

Эта теория, очевидно, обязана своим возникновением явлениям кристаллографической оптики и теории звука, уже достаточно развитой к этому моменту. Нужно признать, что теория Гюйгенса так-дае была основана на классической механике. Но все проницающий эфир, который должен был рассматриваться как носитель волн, и его структура, образованная материальными точками, не могли быть объяснены ни одним из известных явлений. Нельзя было дать ясную картину ни внутренних сил, управляющих эфиром, ни сил, действующих между эфиром и “весомой” материей. Вследствие этого основы этой теории остались навечно темными. Истинной основой теории было уравнение в частных производных, сведение которого к механическим элементам оставалось всегда проблематичным.

В теоретическую  концепцию электрических и магнитных  явлений были вновь введены особого  рода массы, причем допускалось существование сил, действующих между ними на расстоянии, подобно гравитационным силам Ньютона. Этот особый вид материи казался, тем не менее, лишенным фундаментального свойства инерции, и силы, действующие между этими массами и весомой материей, остались неизвестными. К приведенным трудностям добавлялся еще не втискиваемый в схему классической механики полярный характер этих видов материи. Основа теории стала еще менее удовлетворительной, когда узнали об электродинамических явлениях, хотя эти явления позволили физикам объяснить магнитные явления электродинамическими и сделали излишним допущение о магнитных массах. Возмездием за этот успех была необходимость допущения все возрастающей сложности сил взаимодействия между движущимися электрическими массами.

Теория электрического поля Фарадея и Максвелла, благодаря  которой удалось выйти из этого  затруднительного состояния, представляет, очевидно, наиболее глубокое превращение, которое основание физики претерпело со времени Ньютона. Это был новый шаг в направлении конструктивной спекуляции, который увеличил расстояние между фундаментом теории и тем, что мы можем узнать нашими пятью чувствами. Существование поля проявляется, фактически, только когда вводится электрически заряженное тело. Дифференциальные уравнения Максвелла связывают пространственные и временные дифференциальные коэффициенты электрического поля и магнитного поля. Электрические массы становятся лишь местами, где дивергенция электрического поля не Равна нулю. Световые волны появляются как волновые процессы ектромагнитного поля в пространстве.

Нонечно, Максвелл еще пытался интерпретировать свою теорию поля механически, с помощью  моделей эфира. Но эти попытки

45

постепенно отступали  и, освобожденные от всех ненужных придатков, фигурируют, по представлениям Г. Герца, лишь на втором плане, так что в этой теории поле заняло в конце концов то главенствующее положение, которое в механике Ньютона занимали материальные точки. Все-таки в начале это было применимо только к электромагнитному полю в пустоте.

В своей начальной  фазе теория была еще совершенно неудовлетворительной для объяснения явлений внутри вещества, потому что здесь необходимо было ввести два электрических вектора, связанных соотношениями, зависящими от природы среды и недоступными какому-нибудь теоретическому анализу. Аналогичное положение возникает в связи с магнитным полем и с соотношением между плотностью электрического тока и полем. Для избавления от трудностей Г. А. Лоренц нашел способ, который одновременно указывал путь для электродинамической теории движущихся тел, более или менее свободной от произвольных допущений. Его теория была основана на следующих основных гипотезах.

Повсюду (и внутри весомых тел) местонахождением поля является пустое пространство. Участие  материи в электромагнитных явлениях обусловлено тем, что ее элементарные частицы несут неизменные электрические заряды и поэтому подвержены действию пондеромоторных сил и, с другой стороны, обладают свойством порождать поле. Элементарные частицы подчиняются закону движения Ньютона для материальной точки.

Опираясь именно на эту основу, Лоренц добился синтеза  механики Ньютона и теории поля Максвелла. Слабость этой теории состоит в том, что она пытается постигнуть явления  сочетанием уравнений в частных  производных (уравнения Максвелла для поля в пустоте) и уравнений в полных производных (уравнения движения точки); этот прием противоестественный. Мало удовлетворяющая часть теории явно проявляется в необходимости допустить конечность размеров частиц и, кроме того, в необходимости уклоняться от того факта, что существующее на их поверхности электромагнитное поле становится бесконечно большим. Теория была совершенно неспособна объяснить огромные силы, которые удерживают электрические заряды на отдельных частицах. Лоренц принял эти слабости теории, которые он прекрасно знал, чтобы наконец правильно объяснить явления хотя бы в их общих чертах.

Впрочем, у него было одно соображение, которое выходило за рамки его теории. Вблизи электрически заряженного тела имеется магнитное  поле, которое вносит вклад (видимый) в его инерцию. Нельзя ли объяснить общую инерцию частиц электромагнитны”1 путем? Ясно, что эта задача могла быть разработана удовлетво' рителъно, только если частицы могли интерпретироваться как регулярные решения электромагнитных уравнений в частных про-

46

изводных. Уравнения  Максвелла в их первоначальной форме  но позволяли, однако, дать такое описание частиц, потому что соответствующие  решения содержали сингулярность. Поэтому физики-ггроретики долгое время  пытались достигнуть цели видоизменением уравнений Максвелла. Все-таки эти попытки не увенчались успехом. Так случилось, что в это время цель — построение чисто полевой электромагнитной теории материи — не была достигнута, хотя никакие возражения нельзя было привести против принципиальной возможности достижения такой цели. Новой попытке в этом направлении препятствовало отсутствие какого-либо систематического метода, ведущего к решению. Тем не менее мне кажется достоверным, что в основе последовательной теории поля помимо понятия поля не должно быть никакого понятия, относящегося к частицам. Вся теория должна основываться только па уравнениях в частных производных и их решениях, свободных от сингуляр-ностей.

§ 4. Теория относительности

Не существует никакого индуктивного метода, который мог бы вести к фундаментальным понятиям физики. Не зная этого обстоятельства, многие исследователи XIX в. стали жертвами серьезной философской ошибки. Очевидно по этой причине молекулярная теория и теория Максвелла могли утвердиться только в сравнительно позднее время. Логическое мышление по необходимости дедуктивное, оно основано на гипотетических представлениях и аксиомах. В какой мере можно ожидать, что последние избраны именно так, чтобы оправдать надежду достижения вследствие этого определенного успеха?

Наиболее удовлетворительное положение безусловно достигается  в том случае, когда новые фундаментальные  гипотезы навеяны самим экспериментом. Составляющая основу термодинамики  гипотеза о невозможности вечного  движения представляет пример фундаментальной гипотезы, навеянной экспериментом; это же верно для принципа инерции Галилея. К этой же категория относятся, между прочим, фундаментальные гипотезы теории относительности, которая привела к развитию и неожиданному расширению теории поля и замене основ классической механики.

Успехи теории Максвелла — Лоренца внушили  веру в истинность электромагнитных уравнений для пустого пространства, а также, в частности, в утверждение, что свет распространяется в “пространстве” с определенной постоянной скоростью с. Но является ли закон инвариантности скорости света действительным относительно любой инерциальной системы? Если это не имеет места, тогда одна особая инерциальная система, точнее, состояние особого движения (тела отсчета), отличается от всех остальных.

47

Против этой идеи восстают, однако, все механические и оптические данные нашего опыта.

По этим соображениям стало необходимым рассматривать  истинность закона постоянства скорости света для всех инерциальных систем как принцип. Отсюда вытекает, что пространственные координаты х1, х2, х3 и время х4 должны преобразоваться согласно “преобразованиям Лоренца”, которые характеризуются инвариантностью выражения

ds2 = 21 + dх22 + dх2324

если единица  времени выбрана так, что скорость света с = 1.

Благодаря такому приему время потеряло свой абсолютный характер и стало рассматриваться как алгебраически подобное (почти) пространственным координатам. Абсолютный характер времени, и в частности одновременности, был опровергнут, и четырехмерное описание было введено как единственное адекватное.

Чтобы учесть также  эквивалентность всех инерциальных систем относительно всех явлений природы, необходимо постулировать и инвариантность относительно преобразования Лоренца всех систем физических уравнений, выражающих общие законы. Выполнение этого требования составляет содержание частной теории относительности.

Эта теория совместима с уравнениями Максвелла, но она  не совместима с основами классической механики. Правда, уравнения движения материальной точки (и вместе с ними выражения для количества движения и кинетической энергии материальной точки) могут быть видоизменены так, чтобы удовлетворить теории; но понятие силы взаимодействия и вместе с ним понятие потенциальной энергии системы потеряли свою основу, так как эти понятия базировались на идее абсолютной одновременности. Поле, поскольку оно определяется дифференциальными уравнениями, заняло место силы.

Так как теория, о которой идет речь, допускает  взаимодействие только между полями, становится необходимой теория гравитационного  поля. Действительно, не трудно сформулировать теорию, в которой, как и в теории Ньютона, гравитационное поле может быть сведено к скаляру, являющемуся решением уравнения в частных производных. Во всяком случае, экспериментальные факты, выраженные в теории гравитации Ньютона, ведут к другому направлению — общей теории относительности.

Неудовлетворительным  пунктом основ классической механики является двоякая роль, которую играет одна. и та же постоянная масса; она  входит как “инертная масса” в  закон движения и как “тяжелая масса” в закон тяготения. В результате этого ускорение тела в гравитационном поле не зависимо от содержащейся в нем материи; или в равномерно-ускоренной относительно “инерциаль-

Информация о работе Принципы теоретической физики