Автор: Пользователь скрыл имя, 03 Января 2013 в 21:54, статья
С целью изучения практических способов распространения нового определения килограмма, лаборатория метанаук - METAS, проводящая измерения массы, создала новый уникальный в своём роде прибор, который сочетает в себе высокую точность измерения массы и особый детальный химический анализ поверхности, который осуществляется посредством спектроскопии рентгеновских фотоэлектронов (XPS), при тех же условиях. Он специально разработан для исследования больших образцов, таких как реальные эталоны 1 кг и артефакты до 100 мм в диаметре. В этой работе, мы сначала даём подробное описание этого прибора.
Слова благодарности
Авторы хотели бы поблагодарить корпорацию Mettler-Toledo за постоянную поддержку. Авторы особенно благодарны техническим группам METAS за высококвалифицированный технический дизайн, проектирование и их выдающуюся механическую работу, благодаря которой создали этот новый инструмент. Научная и техническая поддержка от S.Wunderli и HP Haerri также высоко оценена.
Ссылки
[1] Andreas B et al 2011 Determination of the Avogadro constant by counting atoms in a ²8Si crystal Phys. Rev. Lett. 106 030801
[2] Busch I, Azuma Y, Bettin H, Cibik L, Fuchs P, Fujii K, Krumrey M, Kuetgens U, Kuramoto N and Mizushima S 2011 Surface layer determination of the Si spheres of the Avogadro project Metrologia 48 S62–82
[3] Andreas B et al 2011 Counting the atoms in a ²8Si crystal for a new kilogram definition Metrologia 48 S1–13
[4] Eichenberger A, Baumann H, Janneret B, Jeckelmann B, Richard P and Beer W 2011 Determination of the Planck constant with the METAS watt balance Metrologia 48 133–41
[5] Eichenberger A, Jeckelmann B and Richard P 2003 Tracing Planck’s constant to the kilogram by electromechanical methods Metrologia 40 356–65
[6] Becker P 2003 Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal Metrologia 40 366–75
[7] Becker P 2009 Determination of the Avogadro constant—a contribution to the new definition of the mass unit kilogram Eur. Phys. J. Spec. Top. 172 343–62
[8] Eichenberger A, Geneve`s G and Gournay P 2009 Determination of the Planck constant by means of a watt balance Eur. Phys. J. Spec. Top. 172 363–83
[9] Robinson A and Kibble P B 2007 An initial measurement of Planck’s constant using the NPL Mark II watt balance Metrologia 44 427–40
[10] Steiner R L, Williams E R, Liu R and Newel D 2007 Uncertainty improvements of the NIST electronic kilogram IEEE Trans. Instrum. Meas. 56 592–6
[11] Geneve`s G et al 2005 The BNM watt balance project IEEE Trans. Instrum.Meas. 54 850–3
[12] Picard A, Stock M, Fang H, Witt T J and Reymann D 2007 The BIPM watt balance IEEE Trans. Instrum. Meas. 56 538–42
[13] EMRP Joint Research Project SIB03 Realisation
of the awaited definition of the kilogram—resolving discrepancies
http://www.euramet.org/index.
[14] EMRP Joint Research Project SIB05 Developing
practical means of disseminating the new kilogram, http://www.euramet.org/index.
[15] Davidson S 2003 A review of surface contamination and the stability of mass standards Metrologia 40 324–38
[16] Chung K, Seo J, Shin Y and Do J 1996 Proce`s-Verbaux CCM/96-3 6th Meeting of the Comiteґ Consultative pour la Masse CCM (Se`vres, 29–30 May 1996)
[17] Ikeda S, Uchikawa K, Hashiguchi Y, Nagoshi M, Kasamura H, Shiozawa K, Fujita D and Yoshihara K 1993 Surface analytical study of cleaning effects and the progress of contamination on prototypes of the kilogram Metrologia 30 133–44
[18] Do J Y, Chung J W, Chang K and Lee Y 1996 Adsorbed mass on stainless steel surface artifact weights Ungyong Mulli 9 424–8
[19] Cumpson P J and Seah M P 1994 Stability of reference masses: I. Evidence for possible variations in the mass of reference kilograms arising from mercury contamination Metrologia 31 21–6
[20] Seah M P, QiuJH,Cumpson P J and Castle J E 1994 Stability of reference masses: II. The effect of environment and cleaning methods on the surfaces of stainless steel and allied materials Metrologia 31 93–108
[21] Cumpson P J and Seah M P 1996 Stability of reference masses: IV. Growth of carbonaceous contamination on platinum–iridium alloy surfaces and cleaning by UV/ozone treatment Metrologia 33 507–32
[22] Bergoglio M, Calcatelli A, Plassa M and Torino A 1988 CCM/88-16 4th Meeting of the Comiteґ Consultative pour la Masse (Se`vres, 1988)
[23] Schwarz R 1994 Precision determination of adsorption layers on stainless steel mass standards by comparison and ellopsometry: I. Adsorption isotherms in air Metrologia 31 117–28
[24] Schwarz R 1994 Precision determination of adsorption layers on stainless steel mass standards by comparison and ellopsometry: II. Sorption phenomena in vacuum Metrologia 31 129–36
[25] Moulder J F, Stickle W F, Sobol P E and Bomben K D 1992 Handbook of X-ray Photoelectron Spectroscopy ed J Chastain (Eden Prairie, MN: Perkin-Elmer Corporation)
[26] Fuchs P 2009 Low-pressure plasma cleaning of Au and PtIr noble metal surfaces Appl. Surf. Sci. 256 1382–90
[27] Seah M P and Spencer S J 2002 Ultrathin SiO2 on Si: II. Issues in quantification of the oxide thickness Surf. Interface Anal. 33 640–52
[28] Petasch W, Kegel B, Schmid H, Lendenmann K and Keller H U 1997 Low-pressure plasma cleaning: a process for precision cleaning applications Surf. Coat. Technol. 97 176–81
[29] Schwartz R and Gläser M 1994 Procedures for cleaning stainless steel weights, investigated by mass comparison and ellipsometry Meas. Sci. Technol. 5 1429–35
[30] Havard D C and Lewis S L 1995 Initial stages in disseminating the UK mass scale: from the National Prototype Kilogram to the stainless steel reference kilograms NPL Report MOM98
[31] Davies R 1985 Recalibration of the U.S. National Prototype Kilogram J. Res. Natl Bur. Stand. 90 263–83
[32] Bonhoure A 1950 CIPM Proce`s-Verbaux Seґances 22 31–5
[33] Bonhoure A 1950 CIPM Proce`s-Verbaux Seґances 23A 44–8
[34] Girard G 1990 The Washing and Cleaning of Kilogram Prototypes at the BIPM (Se`vres: BIPM)
[35] Girard G 1994 The third periodic verification of National Prototypes of the Kilogram (1988–1992) Metrologia 31 317–36
[36] Mori S and Shitara Y 1993 Chemically active surface of gold formed by scratching Appl. Surf. Sci. 68 605–7
[37] Langmuir I 1932 Surface chemistry Nobel lecture, December 14, 1932 Nobel Lectures, Chemistry 1922–1941 (Amsterdam: Elsevier) pp 287–325
[38] Smith D L and Merrill R P 1970 Ethylene adsorption on Pt J. Chem. Phys. 52 5861–72
[39] Weinberg W H, Deans H A and Merrill R P 1974 The structure and chemistry of ethylene adsorbed on platinum Surf. Sci. 41 312–36
[40] Palmer L R 1975 Molecular-beam study of oxygen and C2 hydrocarbon chemisorption and reactions on Pt(111) J. Vac. Sci. Technol. 12 1403–9
[41] Steininger H, Ibach H and Lehwald S 1982 Surface reactions of ethylene and oxygen on Pt(111) Surf. Sci. 117 685–98
[42] Krasnikov S A, Murphy S, Bedrunov N, McCoy A P, Radican K and Shvets I V 2010 Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface Nanotechnology 21 335301
[43] Saliba N A, Tsai Y L, Panja C and Koel B E 1999 Oxidation of Pt by ozone (O3) under UHV conditions Surf. Sci. 419 79–88
[44] Parker D H, Bartram M E and Koel B E 1989 Study of high coverages of atomic oxygen on the Pt(111) surface Surf. Sci. 217 489–510
[45] Taylor J L, Ibbotson D E and Weinberg W H 1979 The chemisorption of oxygen on the (110) surface of iridium Surf. Sci. 79 349–84
[46] Zheng G and Altmann E I 2002 The oxidation mechanism of Pd (1 0 0) Surf. Sci. 504 253–70
[47] Banse B A and Koel B E 1990 Interaction of oxygen with Pd Surf. Sci. 232 275–85
[48] Parker D H and Koel B 1990 Chemisorption of high coverages of atomic oxygen on the Pt(1 0 0), Pd(1 1 1) and Au(1 1 1) surface J. Vac. Sci. Technol. A 8 2585–90
[49] Koslowski B, Boyen H-G, Wilderotter C, KaЁstle G, Ziemann P, Wahrenberg R and Oelhafen P 2001 Oxidation of preferentially (1 1 1)-oriented Au films in an oxygen plasma investigated by scanning tunneling microscopy and photoelectron spectroscopy Surf. Sci. 475 1–10
[50] Saliba N, Parker D H and Koel B E 1998 Adsorption of oxygen on Au(1 1 1) by exposure to ozone Surf. Sci. 410 270–82
[51] Quinn T 1995 Base Units of the Syste`me International d’Uniteґs, their accuracy, dissemination and international traceability Metrologia 31 515–27
[52] Freundlich H 1907 UЁ ber die Adsorption in LoЁsungen Z. Phys. Chem. 57 385–470
[53] Pireaux J J, Chataib M, Delrue J P, Thiry P A, Liehr M and Caudano R 1984 Electron spectroscopic characterization of oxygen adsorption on gold surfaces Surf. Sci. 141 211–20
[54] Peterson L G, Dannetun H, Fogelberg J and Lundström I 1986 Oxygen as a promotor or poison in the catalytic dissociation of H2,C2H4,C2H2 and NH3 on palladium Appl. Surf. Sci.
27 275–84
[55] Davidson S 2012 Characterization of the long-term stability of mass standards stored in vacuum by weighing and surface analysis Metrologia 49 200–8