Автор: Пользователь скрыл имя, 11 Февраля 2013 в 18:46, реферат
Жидкость в гидравлике рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т. е. отвлекаются от молекулярного строения жидкости и ее частицы, даже бесконечно малые, считают состоящими из большого числа молекул.
Вследствие текучести (подвижности частиц) в жидкости действуют силы не сосредоточенные, а непрерывно распределенные по ее объему (массе) или поверхности. В связи с этим силы, действующие на объемы жидкости и являющиеся по отношению к ним внешними, разделяют на массовые (объемные) и поверхностные.
при а = 90°
Здесь: R - радиус закругления трубы, г - радиус трубы.
Если , то данные таблицы следует умножать на коэффициент:
Кроме приведённых зависимостей имеются и другие справочные сведения. Наличие обширного набора сведений по этим вопросам объясняется тем, что колена в закруглённом исполнении весьма широко применяются в строительстве трубопроводов и в различных гидравлических системах.
Задвижки. Задвижки часто используют как средство регулирования характеристик потока жидкости (расход, напор, скорость). При наличии задвижки в трубопроводе поток обтекает находящиеся в трубе плашки задвижки, наличие которых ограничивает живое сечение потока, а также приводит к возникновению вихревых
потоков жидкости около плашек задвижки. Коэффициент потерь напора зависит от степени закрытия задвижки
Краны. Краны также могут использоваться в качестве средств регулирования параметров потока. В этих случаях коэффициент потерь напора зависит от степени закрытия крана (угла поворота).
Обратные клапаны и фильтры. Коэффициенты потерь напора определяются, как правило, экспериментально.
Потери напора по длине
При установившемся движении реальной жидкости основные параметры потока: величина средней скорости в живом сечении (v) и величина перепада давления зависят от физических свойств, движущейся жидкости и от размеров пространства, в котором жидкость движется. В целом, физические свойства жидкости определяются через размерные величины, называемые физическими параметрами жидкости.
Можно установить взаимосвязь между всеми параметрами, от которых зависит движение жидкости. Условно эту зависимость можно записать как некоторую функцию в неявном виде.
где: - линейные величины, характеризующие трёхмерное
пространство,
- линейная величина, характеризующая состояние стенок канала (шероховатость), величина выступов,
- средняя скорость движения
жидкости в живом сечении
- разность давления между
- удельный вес жидкости,
- плотность жидкости,
- динамический коэффициент вязкости жидкости,
- поверхностное натяжение жидкости, К - модуль упругости жидкости.
Для установления зависимости воспользуемся выводами так называемой -теоремы. Суть её заключается в том, что написанную выше зависимость, выраженную в неявном виде, можно представить в виде взаимозависимых безразмерных комплексов. Выберем
три основных параметра с независимыми размерностями , остальные параметры выразим через размерности основных параметров.
Эта операция выполняется следующим образом: пусть имеется некоторый параметр i, выразим его размерность через размерности основных параметров; это будет означать:
?
т.е. размерности левой и правой частей равенства должны быть одинаковыми. Тогда можно записать:
Полученные в результате такой операции безразмерные параметры будут называться пи-членами. Эти безразмерные комплексы имеют глубокий физический смысл, они представляют собой критерии подобия различных сил, действующих в тех или иных процессах.
Проделаем такую операцию с некоторыми из параметров.
Параметр А.
i
Теперь запишем показательные уравнения по размерностям последовательно в следующем порядке: L (длина), М (масса), и Т (время):
Из этой системы уравнений: Таким образом, безразмерным
комплексом по этому параметру может быть: Параметр у.
>* ' откуда получим:
и найдём: . Таким образом, безразмерным комплексом по
этому параметру может быть: . Эта безразмерная величина называется
числом Фруда, Fr. Параметр /и.
и найдём:
Полученный безразмерный комплекс называется числом Рейнольдса, Re. Выполняя аналогичные операции с остальными параметрами можно найти:
число Эйлера, число Вебера, We.
число Коши, Са. В итоге получим как результат:
Поскольку, в большинстве случаев силами поверхностного натяжения можно пренебречь, а жидкость считать несжимаемой средой, можно упростить запись предыдущего выражения, решив последнее уравнение относительно Ей:
Считая канал круглой цилиндрической трубой, и принимая , получим:
Множитель был вынесен за скобки ввиду того, что потери напора по длине пропорциональны длине канала конечных размеров. Далее учитывая, что: , получим:
Обозначим: Эту величину принято называть коэффициентом сопротивления трения по длине или коэффициентом Дарси. Окончательно для круглых труб, учитывая, что :
Эта формула носит название формулы Дарси-Вейсбаха и является одной из основных формул гидродинамики.
Коэффициент потерь напора по длине будет равен:
Запишем формулу Дарси-Вейсбаха в виде:
Величину называют гидравлическим уклоном, а величину называют коэффициентом Шези.
Величина имеет размерность скорости и носит название динамической
скорости жидкости.
Тогда коэффициент трения (коэффициент Дарси):
Список литературы:
Некрасов Б.Б., Башта Т.М.- Гидравлика, гидромашины и гадроприводы