Местные гидравлические сопротивления

Автор: Пользователь скрыл имя, 11 Февраля 2013 в 18:46, реферат

Описание работы

Жидкость в гидравлике рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т. е. отвлекаются от молекулярного строения жидкости и ее частицы, даже бесконечно малые, считают состоящими из большого числа молекул.
Вследствие текучести (подвижности частиц) в жидкости действуют силы не сосредоточенные, а непрерывно распределенные по ее объему (массе) или поверхности. В связи с этим силы, действующие на объемы жидкости и являющиеся по отношению к ним внешними, разделяют на массовые (объемные) и поверхностные.

Работа содержит 1 файл

гидра сопративления.doc

— 216.00 Кб (Скачать)

μ= τdy/d υ.

В системе СГС за единицу  вязкости принимается пуаз: 1 П = 1 дин  • с/см2.

Так как 1 дин = 10-5 H = 1,02·10-6кгс, а 1 м2 = 104 см2, то 1 П = 0,1 Па·с = 0,0102 кгс·с/м2.

Наряду с динамической вязкостью μ применяют кинематическую

ν= μ/ρ             (1.16)

Единицей измерения  кинематической вязкости является стоке: 1 Ст=1 см2/с.

Сотая доля стокса называется сантистоксом (сСт).

Вязкость капельных жидкостей зависит от температуры и уменьшается с увеличением последней (рис. 1.3). Вязкость газов, наоборот, с увеличением температуры возрастает. Объясняется это различием природы вязкости в жидкостях и газах. В жидкостях молекулы расположены гораздо ближе друг к другу, чем в газах, и вязкость

вызывается силами молекулярного сцепления. Эти силы с увеличением, температуры уменьшаются, поэтому вязкость, падает. В газах же вязкость обусловлена, главным, образом, беспорядочным тепловым движением молекул, интенсивность которого увеличивается с повышением температуры. Поэтому вязкость газов с увеличением температуры возрастает.

Влияние температуры  на вязкость жидкостей можно оценить  формулой

μ=μ0e-β(T-T0)                            (1.17)

где μ. и | μ0— вязкости при температуре Т и Т0; β- коэффициент, значение которого для масел изменяется в пределах 0,02—0,03.

Вязкость жидкостей  зависит также от давления, однако эта зависимость существенно проявляется лишь при относительно боль ших изменениях давления (в несколько десятков МПа). С увеличением давления вязкость большинства жидкостей возрастает, что может быть оценено формулой

μ μ=μ0e0eα(p-p0)            (1.18)

где μ и μ0— вязкости при давлении р и р0; а — коэффициент, значение которого для минеральных масел изменяется в пределах 0,02—0,03 (нижний предел соответствует высоким температурам, а верхний — низким).

Приближенная зависимость  относительной вязкости μ/μ0 от давления для  минеральных масел показана на рис. 1.4 для предельных значений коэффициента α.

Вязкость жидкостей  измеряют при помощи вискозиметров. Наиболее распространенным является вискозиметр Энглера, который представляет собой цилиндрический сосуд диаметром 106 мм, с короткой трубкой диаметром 2,8 мм, встроенной в дно. Время t истечения 200 см3 испытуемой жидкости из вискозиметра через эту трубку под действием силы тяжести, деленное на время tвод истечения того же объема дистиллированной воды при 20 ° С выражает вязкость в градусах Энглера: 1 °Е = t/tвод, где tвод = 51,6 с.

Для пересчета градусов Энглера  в стоксы в случае минеральных  масел применяют формулу

ν = 0,0730 Е-(0.063/0E).

6. Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий, в которых они находятся.

Одним из показателей, характеризующих  испаряемость жидкости, является температура ее кипения при нормальном атмосферном давлении; чем выше температура кипения, тем меньше испаряемость жидкости. В гидросистемах нормальное атмосферное давление является лишь частным случаем; обычно приходится иметь дело c испарением, а иногда и кипением жидкостей в замкнутых объемах при различных температурах и давлениях. Поэтому более полной характеристикой испаряемости является давление (упругость) насыщенных паров рн.п, выраженное в функции температуры. Чем больше давление насыщенных паров при данной температуре, тем больше испаряемость жидкости. С увеличением температуры давление рн.п увеличивается, однако у разных жидкостей в разной степени (рис. 1.5).

 

Если для простой  жидкости рассматриваемая зависимость является вполне определенной, то для сложных жидкостей, представляющих собой многокомпонентные смеси (например, для бензина и др.), давление рн п зависим не только от физико-химических свойств и температуры, но и от соотношения, объемов жидкой и., паровой фаз. Давление насыщенных паров возрастает с увеличением части объема, занятого жидкой фазой. Обычно значения упругости паров сложных жидкостей даются для отношения паровой и жидкой фаз, равного 4:1.

7. Растворимость газов в жидкостях характеризуется количеством растворенного газа в единице объема жидкости, различна для разных жидкостей и изменяется .с увеличением давления.

Относительный объем  газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри иряыо пропорциональным давлению, т. е.

Vг/Vж=kp/p0,

где Vг -объем растворенного газа, приведенный к нормальным условиям (p0, Т0); Vж -объем жидкости; k — коэффициент растворимости; р — давление жидкости.

Коэффициент k имеет следующие значения при 20 °С: для воды . 0,016, керосина 0,13, минеральных масел 0,08, жидкости АМГ-10 — 0,1.

При понижении . давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказываться на. работе гидросистем.

 

Список литературы:

 

 

 

Некрасов Б.Б., Башта  Т.М.- Гидравлика, гидромашины и гадроприводы

 

Гидравлические сопротивления

Потери удельной энергии  в потоке жидкости, безусловно, связаны  с вязкостью жидкости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большинства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда:

Потери напора принято  подразделять на две категории:

потери напора, распределённые вдоль всего канала, по которому перемещается жидкость (трубопровод, канал, русло реки и др.), эти потери пропорциональны длине канала и называются потерями напора по длине сосредоточенные потери напора: потери напора на локальной длине потока (достаточно малой по сравнению с протяжённостью всего потока). Этот вид потерь во многом зависит от особенностей преобразования параметров потока (скоростей, формы линий тока и др.). Как правило, видов таких потерь довольно много и их расположение по длине потока зачастую далеко не закономерно. Такие потери напора называют местными потерями или потерями напора на местных гидравлических сопротивлениях. Это вид потерь напора также принято исчислять в долях от скоростного напора

Тогда полные потери напора можно представить собой как  сумму всех видов потерь напора:

Оценка величины местных  потерь напора практически всегда базируются на результатах экспериментов, по результатам таких экспериментов определяются величины коэффициентов потерь. Для вычисления потерь напора по длине имеются более или менее надёжные теоретические предпосылки, позволяющие вычислять потери с помощью привычных формул.

Потери напора на местных гидравлических сопротивлениях

Несмотря на многообразие видов местных гидравлических сопротивлений, их всё же можно при желании  сгруппировать: потери напора в руслах при изменении размеров живого сечения, потери напора на местных гидравлических сопротивлениях, связанных с изменением направления движения жидкости, потери напора при обтекании преград.

Внезапное расширение русла. Внезапное расширение русла чаще всего наблюдается на стыке участков трубопроводов, когда один трубопровод сочленяется с магистральным трубопроводом большего диаметра. Величина коэффициента потерь напора в данном случае определяется с достаточной точностью на теоретическом уровне. Поток жидкости движущейся в трубопроводе меньшего диаметра d, попадая в трубу большего диаметра, касается стенок нового участка трубопровода не сразу, а лишь в сечении 2-2'. На участке между сечениями 1 - Г и 2-2' образуется зона, в которой жидкость практически не участвует в движении по трубам, образуя локальный вихревой поток, где претерпевает деформацию. По этой причине часть кинетической энергии движущейся жидкости тратиться на поддержание «паразитного» сращения и деформации жидкости. Величины средних скоростей жидкости в сечениях можно определить из условия неразрывности.

Тогда величина потерь напора при внезапном расширении русла  определится:

Таким образом, можно  сказать, что потеря напора при внезапном  расширении потока равна скоростному  напору, соответствующему потерянной скорости.

Плавное расширение русла (диффузор). Плавное расширение русла называется диффузором. Течение жидкости в диффузоре имеет сложный характер. Поскольку живое сечение потока постепенно увеличивается, то, соответственно, снижается скорость движения  жидкости и увеличивается давление. Поскольку, в этом случае, в слоях жидкости у стенок диффузора кинетическая энергия минимальна (мала скорость), то возможна остановка жидкости и интенсивное вихреобразование. По этой причине потери энергии напора в диффузоре будут зависеть от потерь напора на трение и за счёт потерь при расширении:

2

где:    - площадь живого сечения на входе в диффузор,

S2 - площадь живого сечения на выходе из диффузора, а - угол конусности диффузора,

- поправочный коэффициент, зависящий  от условий расширения потока в диффузоре.

Внезапное сужение  канала. При внезапном сужении канала поток жидкости отрывается от стенок входного участка и лишь затем (в сечении 2 - 2)касается стенок канала меньшего размера. В этой области потока образуются две зоны интенсивного вихреобразования (как в широком участке трубы, так и в узком), в результате чего, как и в предыдущем случае, потери напора складываются из двух составляющих (потерь на трение и при сужении). Коэффициент

потерь напора при  гидравлическом сопротивлении внезапного сужения потока можно определить по эмпирической зависимости, предложенной И.Е. Идельчиком:

или взять по таблице:

Плавное сужение канала. Плавное сужение канала достигается с помощью конического участка называемого конфузором. Потери напора в конфузоре образуются практически за счёт трения, т.к. вихреобразование в конфузоре практически отсутствует. Коэффициент потерь напора в конфузоре можно определить по формуле:

При большом угле конусности а >50° коэффициент потерь напора можно определять по формуле с внесением поправочного коэффициента.

Нормальный вход в  трубу. Из резервуаров, где хранятся жидкости вход в выкидной трубопровод осуществляется в так называемом нормальном исполнении, т.е. когда осевая линия патрубка трубопровода располагается по нормали к боковой стенку резервуара. Этот вид гидравлических сопротивлений также можно отнести к сопротивлениям связанным с изменением размеров русла,  просто здесь размеры нового русла бесконечно малы по сравнению с размерами исходного русла с сечением резервуара. В этом случае внутри выкидного патрубка вытекающая из резервуара жидкость заполняет всё сечение трубы не сразу, а лишь на некотором расстоянии от входа. В этой области в застойной зоне часть жидкости совершает вращательное движение и созданный таким образом вихрь порождает дополнительные г

 гидравлические сопротивления.  Коэффициент потерь напора при этом приблизительно составляет половину скоростного напора:

Выход из трубы в  покоящуюся жидкость. Это обычный элемент стыковки напорной части трубопровода с резервуаром. Входной патрубок трубопровода располагается нормально к боковой  стенке резервуара. Этот вид гидравлических сопротивлений также можно рассматривать как разновидность внезапного расширения потока жидкости до бесконечно большого сечения. Величина коэффициента потерь напора, в большинстве случаев, принимается равной одному скоростному напору.

Внезапный поворот  канала. Под таким гидравлическим сопротивлением будем понимать место соединения трубопроводов одинакового диаметра, при котором осевые линии трубопроводов не совпадают, т.е. составляют между собой некоторый угол а Этот угол называется углом поворота русла, т.к. здесь изменяется направление движения жидкости. Физические основы процесса преобразования кинетической энергии при повороте потока достаточно сложны и следует рассмотреть лишь результат этих процессов. Так при прохождении участка внезапного поворота образуется сложная форма потока с двумя зонами вихревого движения жидкости. На практике такие элементы соединения трубопроводов называют коленами. Следует отметить, что колено как соединительный элемент является крайне нежелательным ввиду значительных потерь напора в данном виде соединения. Величина коэффициента потерь напора будет, в первую очередь, зависеть от угла поворота русла и может быть определена по эмпирической формуле или по таблице:

Плавный поворот канала Этот вид гидравлических сопротивлений можно считать более благоприятным (экономичным) с точки зрения величины потерь напора, т.к. в данном случае опасных зон для образования интенсивного вихревого движения жидкости практически нет. Тем не менее, под действием того, что при повороте потока возникают центробежные силы, способствующие отрыву частиц жидкости от стенки трубы, вихревые зоны всё же возникают. Кроме того, при этом возникают встречные потоки жидкости

направленные от внутренней стенки трубы к внешней стенке трубы. Коэффициент потерь

напора определяется по эмпирическим формулам или по таблицам. При угле поворота русла на 90° и :

При угле поворота русла а)100° :

                                                                                                                                                                                                                                                                                                                                                                                                                                                        

Информация о работе Местные гидравлические сопротивления