Автор: Пользователь скрыл имя, 29 Ноября 2011 в 18:04, реферат
«Сначала хирург, а потом капитан нескольких кораблей» Лемюэль Гулливер в
одном из своих путешествий попал на летающий остров — Лапуту. Зайдя в один
из заброшенных домов в Лагадо, столице Лапутии, он обнаружил там странного
истощенного человека с закопченным лицом. Его платье, рубаха и кожа
почернели от копоти, всклокоченные волосы и борода были местами опалены.
Этот неисправимый прожектер восемь лет разрабатывал проект извлечения из
огурцов солнечных лучей. Эти лучи он намеревался собирать в герметически
закупоренные склянки, чтобы в случае холодного или дождливого лета
обогревать ими воздух. Он выразил уверенность, что еще через восемь лет
сможет поставлять солнечный свет повсюду, где он потребуется.
прямолинейно распространяются, образуя тени. Ему удалось даже сделать
гигантскую призму из двух тонн асфальта, которая преломляла
электромагнитные волны, как стеклянная призма — световые.
Но еще десятью годами раньше Герц неожиданно для себя заметил, что разряд
между двумя электродами, происходит гораздо легче, если эти электроды
осветить ультрафиолетовым светом.
Эти опыты, не получившие развития в работах Герца, заинтересовали
профессора физики Московского университета Александра Григорьевича
Столетова. В феврале 1888 года он приступил к серии опытов, направленных на
изучение таинственного явления. Решающий опыт, доказывающий наличие
фотоэффекта — возникновение электрического тока под воздействием света,
—был проведен 26 февраля. В экспериментальной установке Столетова потек
электрический ток, рожденный световыми лучами. Фактически заработал первый
фотоэлемент, который впоследствии нашел многочисленные применения в самых
разных областях техники.
В начале XX века Альберт Эйнштейн создал теорию фотоэффекта, и в руках
исследователей появились, казалось бы, все инструменты для овладения этим
источником энергии. Были созданы фотоэлементы на основе селена, потом более
совершенные — таллиевые. Но они обладали очень малым коэффициентом
полезного действия и нашли применение только в устройствах управления,
подобных привычным турникетам в метро, в которых луч света преграждает
дорогу безбилетникам.
Следующий шаг был сделан, когда учеными были подробно изучены открытые
еще в 70-х годах прошлого века фотоэлектрические свойства полупроводников.
Оказалось, что полупроводники гораздо эффективнее металлов преобразуют
солнечный свет в электрическую энергию.
Академик Абрам Федорович Иоффе мечтал о применении полупроводников в
солнечной энергетике еще в 30-е годы, когда сотрудники руководимого им
Физико-технического института АН СССР в Ленинграде Б. Т. Коломиец и Ю. П.
Маслаковец создали медно-таллиевые фотоэлементы с рекордным по тому времени
коэффициентом полезного действия — 1%! Следующим шагом на этом направлении
поиска было создание кремниевых фотоэлементов. Уже первые образцы их имели
коэффициент полезного действия 6%. Используя такие элементы, можно было
подумать и о практическом получении электрической энергии из солнечных
лучей.
Первая солнечная батарея была создана в 1953 году. Поначалу это была
просто демонстрационная модель. Какого-то практического применения тогда не
предвиделось — слишком мала была мощность первых солнечных батарей. Но
появились они очень вовремя, для них вскоре нашлось ответственное задание.
Человечество готовилось шагнуть в космос. Задача обеспечения энергией
многочисленных механизмов и приборов космических кораблей стала одной из
первоочередных. Существующие аккумуляторы, в которых можно было бы запасти
электрическую энергию, неприемлемо громоздки и тяжелы. Слишком большая
часть полезной нагрузки корабля ушла бы на перевозку источников энергии,
которые, кроме того, постепенно расходуясь, скоро превратились бы в
бесполезный громоздкий балласт. Самым заманчивым было бы иметь на борту
космического корабля собственную электростанцию, желательно — обходящуюся
без топлива. С этой точки зрения солнечная батарея оказалась очень удобным
устройством. На это устройство и обратили внимание ученые в самом начале
космической эры.
Уже третий
советский искусственный
мая 1958 года, был оснащен солнечной батареей. А теперь широко распахнутые
крылья, на которых размещены целые солнечные электростанции, стали
неотъемлемой деталью конструкции любого космического аппарата. На советских
космических станциях «Салют» и «Мир» солнечные батареи в течение многих лет
обеспечивают энергией и системы жизнеобеспечения космонавтов, и
многочисленные научные приборы, установленные на станции.
Автоматическая межпланетная станция
«Вега»
На Земле, к сожалению, этот способ получения больших количеств
электрической энергии — дело будущего. Причины этого— уже упоминавшийся
нами небольшой пока коэффициент полезного действия солнечных элементов.
Расчеты показывают: чтобы получить большие количества энергии, солнечные
батареи должны занимать огромную площадь — тысячи квадратных километров.
Потребность Советского Союза в электроэнергии, например, могла бы
удовлетворить сегодня лишь солнечная батарея площадью 10 тысяч квадратных
километров, расположенная в пустынях Средней Азии. Сегодня произвести такое
громадное количество солнечных элементов практически невозможно.
Применяемые в современных фотоэлементах сверхчистые материалы — чрезвычайно
дорогостоящие. Чтобы их изготовить, нужно сложнейшее оборудование,
применение особых технологических процессов. Экономические и
технологические соображения пока не позволяют рассчитывать на получение
таким путем значительных количеств электрической энергии. Эта задача
остается XXI веку.
В последнее время советские исследователи — признанные лидеры мировой
науки в сфере конструирования материалов для полупроводниковых
фотоэлементов — провели ряд работ, позволивших приблизить время создания
солнечных электростанций. В 1984 году Государственной премии СССР удостоены
работы исследователей, возглавляемых академиком Ж. Алферовым, которым
удалось создать
совершенно новые структуры
фотоэлементов. Коэффициент полезного действия солнечных батарей из новых
материалов достигает уже 30%, а теоретически он может составить и 90%!
Применение таких фотоэлементов позволит в десятки раз сократить площади
панелей будущих солнечных электростанций. Их можно сократить еще в сотни
раз, если солнечный поток предварительно собрать с большой площади,
сконцентрировать и только потом подать на солнечную батарею. Так что в
будущем XXI веке солнечные электростанции с фотоэлементами могут стать
обычным источником энергии. Да и в наши дни уже имеет смысл получать
энергию от солнечных батарей в тех местах, где других источников энергии
нет.
Например, в Каракумах для сварки конструкций фермы применили
разработанный туркменскими специалистами аппарат, использующий энергию
солнца. Вместо того, чтобы привозить с собой громоздкие баллоны с сжатым
газом, сварщики могут использовать небольшой аккуратный чемоданчик, куда
помещена солнечная батарея. Рожденный солнечными лучами постоянный
электрический ток используется для химического разложения воды на водород и
кислород, которые подаются в горелку газосварочного аппарата. Вода и солнце
в Каракумах есть возле любого колодца, так что громоздкие баллоны, которые
нелегко возить по пустыне, стали ненужными.
Крупная солнечная электростанция мощностью около 300 киловатт создается в
аэропорту города Феникс в американском штате Аризона. Солнечную энергию в
электричество будет превращать солнечная батарея, состоящая из 7 200
солнечных элементов. В том же Штате действует одна из крупнейших в мире
ирригационных систем, насосы которой используют энергию солнца,
преобразованную
в электричество
тоже действуют солнечные насосы. Огромные солнечные батареи питают
электроэнергией моторы насосов, которые поднимают пресную воду, необходимую
в этих пустынных местностях, из огромного подземного моря, расположенного
под песками.
Целый экологически чистый городок, все энергетические потребности
которого будут удовлетворяться за счет возобновляемых источников, строится
в Бразилии. На крышах домов этого необычного поселения будут располагаться
солнечные водонагреватели. Четыре ветряных двигателя приведут в действие
генераторы мощностью по 20 киловатт каждый. В безветренные дни
электроэнергия будет поступать из здания, расположенного в центре города.
Его крыша и стены — это солнечные батареи. Если не будет ни ветра, ни
солнца, энергия поступит от обычных генераторов с двигателями внутреннего
сгорания, но тоже особенных — топливом для них будет служить не бензин или
дизельное топливо, а спирт, не дающий вредных выбросов.
Солнечные батареи постепенно входят в наш быт. Уже никого не удивляют
появившиеся в магазинах микрокалькуляторы, работающие без батареек.
Источником питания для них служит небольшая солнечная батарея,
вмонтированная в крышку прибора. Заменяют другие источники питания
миниатюрной солнечной батареей и в электронных часах, радиоприемниках и
магнитофонах. Появились солнечные радиотелефоны-автоматы вдоль дорог в
пустыне Сахара. Перуанский город Тирунтам стал обладателем целой
радиотелефонной сети, работающей от солнечных батарей. Японские специалисты
сконструировали солнечную батарею, которая по размерам и по форме
напоминает обыкновенную черепицу. Если такой солнечной черепицей покрыть
дом, то электроэнергии хватит для удовлетворения нужд его жильцов. Правда,
пока неясно, как они будут обходиться в периоды снегопадов, дождей и
туманов? Без традиционной электропроводки обойтись, по-видимому, не
удастся.
Вне конкуренции
солнечные батареи оказываются