Проблема «искусственного интеллекта» в современной философии и науке

Автор: Пользователь скрыл имя, 18 Октября 2012 в 01:05, реферат

Описание работы

Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры.

Содержание

Понятие искусственного интеллекта.
История искусственного интеллекта.
Проблемы искусственного интеллекта и их пути решения.
Искусственный интеллект и философия.
Гносеологические проблемы искусственного интеллекта.

Работа содержит 1 файл

Искусственный интеллект_ed.doc

— 163.00 Кб (Скачать)

Такой взгляд обосновывается X. Дрейфусом. "Телесная организация человека, - пишет он, - позволяет ему выполнять... функции, для которых нет машинных программ - таковые не только еще  не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся".

Как отмечают специалисты, подчеркивание  значения "телесной организации" для понимания особенностей психических  процессов, в частности возможности  восприятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам.

Иногда в философской литературе утверждается, что допущение возможности  выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований.

X. Дрейфус подчеркивает, что ЭВМ  оперирует информацией, которая  не имеет значения, смысла. Поэтому  для ЭВМ необходим перебор  огромного числа вариантов. Телесная  организация человека, его организма  позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для "нетелесной" ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его "теле", в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к "интеллекту" ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.

Системы, обладающие психикой, отличаются от ЭВМ, прежде всего тем, что им присущи  биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый - круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй - нестираемые из памяти фундаментальные потребности организма о ябусловливают односторонность психической системы. Дрейфус пишет в связи с этим: "Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений". С этим нельзя согласиться. Если "марсианин" имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему "человеческие устремления" значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.

Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей и с точки зрения возможностей их удовлетворения. Однако эта универсальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта.

Таким образом, телесная организация  не только дает дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных и иных потребностей, пристрастий. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Им цели необходимо задавать в явной форме.

Вместе с тем следует отметить, что технические системы могут  иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах третьего поколения ЭВМ выполняет и "интеллектуальные" функции. Их взаимодействие с миром призвано совершенствовать их "интеллект". Такого рода роботы имеют "телесную организацию", конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, абстрактно говоря, могла бы совершать поиск цифровая машина.

Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению  интеллектуальных задач более высокого порядка, требующих учета глобального  характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Это значит, что техническая (а не только биологическая) эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратурное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим еще далеко не исчерпаны возможности совершенствования систем искусственного интеллекта путем использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.

В последнее время при анализе  проблем, связанных с искусственным  интеллектом, часто применяют математический аппарат нечетких множеств, идея и реализация которого принадлежит американскому математику Л.А.Заде. Суть его подхода состоит в своего рода некотором отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое. Математическая теория нечетких множеств, предложенная Л.А.Заде около тридцати лет назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

Таким образом, природа мышления, загадка  сознания, тайна разума, все это, безусловно, одна из наиболее волнующих  человека проблем. С того самого момента, как человек стал задумываться над  проблемой мышления, в подходе  к ней существуют два основных диаметрально противоположных направления: материализм и идеализм. Идеализм исходит из признания мышления некой особой сущностью, в корне отличной от материи, от всего того, с чем мы имеем дело во внешнем мире. Материализм, напротив, утверждает, что вещественный, чувственно воспринимаемый нами мир, к которому принадлежим мы сами, есть единственный действительный мир и наше сознание и мышление, как бы ни казалось оно сверхчувствительным, являются продуктом вещественного, телесного органа.

Можно пытаться объяснить, что, так как кибернетика позволяет моделировать некоторые функции мозга, то сознание или разум имеет чисто материальную основу. Однако данная область может считаться слабо изученной, несмотря на труд не одного поколения ученых, и делать подобные выводы еще более чем рано.

До сих пор диалектико-материалистическое понимание мышления опиралось, главным  образом, на обобщенные данные психологии, физиологии и языкознания. Данные кибернетики  позволяют поставить вопрос о  более конкретном понимании мышления.

Инструментом философии является знание. Именно инструментом, а не результатом. Знание не есть конечный предмет, который  можно положить в сундук и сказать: "Да, теперь у меня есть знание!" Знание - это цепочка. Знание в области  искусственного интеллекта - тоже есть цепочка, причем бесконечная.

Инструментом же кибернетики является моделирование. С точки зрения теории моделирования вообще не имеет смысла говорить о полном тождестве модели и оригинала. Поэтому нельзя стопроцентно смоделировать разумное поведение, объект, способный мыслить, и поместить его все в тот же сундук. Все это вполне согласуется с понятием знания.

Развитие информационной техники  позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. "Внешняя нервная система", создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и, тем самым, в развитие свободы человека.

 

Заключение

 

В наши дни, идущие под знаком ускорения научно-технического прогресса, автоматизация  интеллектуальной деятельности становится насущной проблемой.

Развитие  информационной техники позволило  компенсировать человеку психофизиологическую ограниченность своего организма в  ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и тем самым в развитие свободы человека.

Искусственный интеллект молодая и многообещающая область науки, основная цель которой - найти эффективный способ понимания и применения интеллектуального решения проблем, планирования и навыков общения к широкому кругу практических задач.

 

Список литературы

 

  1. "Будущее искусственного интеллекта." М., Наука, 1991, ред.: Карл, Левитин, Поспелов, Хорошевский.
  2. Бертран Рассел, «История западной философии», Новосибирск, изд. Новосибирского университета, 1997;
  3. Г. Кузнецов, «Цель жизни», Компьютерра, №35 1997г.
  4. Люгер, Джордж, Ф. Искусственный интеллект: стратегии и методы решения сложных проблем, 4-е издание. : Пер. с англ. - М.: Издательский дом "Вильямс", 2003.

Информация о работе Проблема «искусственного интеллекта» в современной философии и науке