Автор: Пользователь скрыл имя, 30 Марта 2012 в 08:04, контрольная работа
В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания: практические, наглядные, словесные, игровые.
Обычно они применяются комплексно, в разнообразных комбинациях друг с другом, важно чтобы они позволяли достигать наилучших результатов при обучении маленьких детей
1. Классификация методов (схема).
2. Дать краткую характеристику каждой группы, соотнося с методами математического развития
3. Математическая сказка как метод формирования математических представлений.
4. Подобрать математическую сказку для использования в образовательном процессе, проиллюстрировать ее.
5. Представить математическую сказку собственного сочинения, приложить к ней дидактические пособия.
Вариант III
Методы обучения детей математическим представлениям
ПЛАН
1. Классификация методов (схема).
2. Дать краткую характеристику каждой группы, соотнося с методами
математического развития.
3. Математическая сказка как
метод формирования
представлений.
4. Подобрать математическую сказку для использования в образовательном процессе, проиллюстрировать ее.
5. Представить математическую сказку собственного сочинения, приложить к ней дидактические пособия.
Литература:
+ дополнительная литература, подобранная студентами.
1. Классификация методов (схема).
В педагогике метод характеризуется как целенаправленная система действий воспитателя и детей, соответствующих целям обучения, содержанию учебного материала, самой сущности предмета, уровню умственного развития ребёнка. [1, 95]
В теории и методике математического развития детей термин «метод» употребляется в двух смыслах - широком и узком. Метод может обозначать исторически сложившийся подход к предматематической подготовке в детском саду (монографический метод, вычислительный метод), а также способы и приёмы работы воспитателя с детьми. [2, 114]
В педагогических системах И.Г. Песталоцци, Ф. Фребеля, М. Монтессори и др. обосновывается необходимость математического развития детей, а в связи с этим выдвигаются идеи о совершенствовании методов их обучения.
В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения и умственного воспитания:
Обычно они
применяются комплексно, в разнообразных
комбинациях друг с другом, важно
чтобы они позволяли достигать
наилучших результатов при
Таким образом, изучив литературу, я составила следующую схему, отображающую методы математического развития дошкольников.
2. Дать краткую характеристику каждой группы, соотнося с методами
математического развития
В формировании элементарных математических представлений ведущим принято считать практический метод. Сущность его заключается в организации практической деятельности детей, направленной на усвоение определённых способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т.д.), на базе которых возникают элементарные математические представления.
Практический метод в наибольшей мере соответствует :
В мышлении маленького ребёнка отражается, прежде всего, то, что вначале совершается в практических действиях с конкретными предметами, их изображениями или условными обозначениями.
Согласно теории П.Я. Гальперина происходит это следующим образом: практические и материализованные внешние действия детей, отражаясь в устной речи, переносятся во внутренний план, в мысль. Развитие мысли проходит ряд этапов. На каждом из них с разной глубиной происходит отражение практически производимого материализованного действия.
Характерными особенностями практического метода при формировании элементарных математических представлений являются:
Практический метод предполагает организацию упражнений. В процессе упражнений ребёнок неоднократно повторяет практические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (у стола воспитателя) формы выполнения упражнений.
Коллективные упражнения, помимо усвоения и закрепления знаний, могут использоваться для контроля. Индивидуальные упражнения, выполняя те же функции, служат образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга. Упражнения должны дифференцироваться по степени сложности с учётом индивидуальных особенностей детей.
Игровые элементы включаются в упражнения во всех возрастных группах:
в младших - в виде сюрпризного момента, имитационных движений, сказочного персонажа и т. д.;
в старших - приобретают характер поиска, угадывания, соревнования. В таких случаях говорят об игровых упражнениях или упражнениях в игровой форме.
С возрастом детей упражнения усложняются: они уже состоят из большего числа звеньев, учебно-познавательное содержание выступает в них прямо, не маскируясь практической или игровой задачей, во многих случаях для их выполнения требуется проявление смекалки, сообразительности.
Но в то же время, я считаю, излишнее использование практических методов, задержка на уровне практических действий может отрицательно сказываться на ребёнке.
При формировании элементарных математических представлений игра выступает, как метод обучения и может быть отнесена к практическим методам.
Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облечённой в игровую форму (игровой замысел), игровым действиям и правилам ребёнок непреднамеренно усваивает определённую «порцию» познавательного содержания.
Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представлений у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время. Все они выполняют основные функции обучения - образовательную, воспитательную и развивающую.
Все дидактические игры по формированию элементарных математических представлений разделены на несколько групп:
1. Игры с цифрами и числами
2. Игры путешествие во времени
3. Игры на ориентировки в пространстве
4. Игры с геометрическими фигурами (см. Приложение 2)
5. Игры на логическое мышление
Знания в виде способов действий и соответствующих им представлений ребёнок получает первоначально вне игры, в играх лишь создаются благоприятные условия для их уточнения, закрепления, систематизации. Структура большинства дидактических игр не позволяет сообщить детям новые знания, однако это не означает что в принципе такое невозможно. [11, 118]
Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элементарных математических представлений.
Игра как метод обучения и формирования элементарных математических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровых приёмов (сюрпризный момент, соревнование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребёнка. [11, 118-119]
Обеспечить всестороннюю математическую подготовку детей всё-таки удаётся при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен.
Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам. Но это отнюдь не умаляет их значения в математическом развитии детей.
К наглядным методам обучения относятся:
К словесным методам относятся:
1. Демонстрация воспитателем способа действия в сочетании с объяснением. Это основной приём обучения, он носит наглядно-действенный характер, выполняется с помощью разнообразных дидактических средств, даёт возможность формировать навыки и умения у детей. К нему, как правило, предъявляют следующие требования:
чёткость, «пошаговая» расчленённость демонстрации;
согласованность действий со словесными пояснениями;
точность, краткость и выразительность речи, сопровождающей показ способов действия;
активизация восприятия, мышления и речи детей.
Этот приём чаще всего используется при сообщении новых знаний.
2. Инструкция по выполнению
В старших группах инструкция носит целостный характер, даётся полностью до выполнения задания, в младших - сочетается с ходом его выполнения, предваряя каждое новое действие.
3. Пояснения, разъяснения, указания. Эти словесные приёмы используются воспитателем при демонстрации способов действия или в ходе выполнения детьми задания, чтобы предупредить ошибки, преодолеть затруднения и т. д. Они должны быть краткими, конкретными, живыми и образными. [13, 119]
«Слово-Стекло», - говорил лингвист А.А. Потебня. Через слово должно всегда просвечивать его предметное содержание. Поэтому слово воспитателя должно быть всегда ясным и точным. [4, 146]
4. Вопросы к детям. Это одно из основных приёмов формирования элементарных математических представлений у детей во всех возрастных группах. Они могут быть:
репродуктивно - мнемические (Что это такое? Какого цвета флажки? И т. д.)
репродуктивно - познавательные (Сколько будет на полке кубиков, если я поставлю ещё один? И т. д.)
продуктивно - познавательные (Что надо сделать, чтобы кружков стало поровну? И т. д.) [8, 43]
Некоторые основные требования к вопросам воспитателя как методическому приёму:
точность, конкретность и лаконизм;
логическая последовательность;
разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному;
оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала;
вопросы должны будить мысль ребёнка, развивать его мышление, заставлять задумываться, анализировать, сравнивать, сопоставлять, обобщать;
количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель;
следует избегать подсказывающих и альтернативных вопросов.
Существуют также методические требования к ответам детей. Ответы должны быть:
кратким или полным в зависимости от характера вопроса;
самостоятельными и осознанными;
точными, ясными, достаточно громкими;
грамматически правильными
В работе с дошкольниками воспитателю часто приходиться прибегать к приёму переформулировки ответов, придавая им правильную форму.[11, 121]
Информация о работе Методы обучения детей математическим представлениям