Автор: Пользователь скрыл имя, 01 Июня 2013 в 10:00, реферат
Цель: показать эффективность применения проблемного обучения в школьном курсе химии.
Объект исследования: учебно-воспитательный процесс в общеобразовательных учреждениях.
Задачи:
Рассмотреть преимущества применения технологии проблемного обучения на уроках химии.
На практике показать целесообразность применения технологии проблемного обучения на уроках химии.
Исследовать эффективность проблемного обучения химии с применением школьного химического эксперимента.
Учащийся: слабая многоосновная ортофосфорная кислота.
Учитель: Рассмотрим сначала гидролиз средней соли – фосфата натрия. Первая (основная) ступень гидролиза выражается следующими уравнениями:
Na3PO4 + HOH <=> Na2HPO4 + NaOH
PO43- + HOH <=> HPO4 2- + OH-
Образующийся при гидролизе ион НРО42- практически не диссоциирует на ионы (см. константы диссоциации Н3РО4), поэтому характер среды определяют ионы ОН-, и среда водных растворов средних фосфатов является сильнощелочной.
При гидролизе гидрофосфатов на первой ступени образуются дигидрофосфат-ионы, что видно из следующих уравнений:
Na2HPO4 + HOH <=> NaH2PO4 + NaOH
HPO42- + HOH <=> H2PO4- + OH-
Образующиеся ионы Н2РО4- заметно диссоциируют:
Н2РО4- <=> Н+ + НРО42- .
Являющиеся продуктом этой диссоциации ионы водорода частично нейтрализуют ионы ОН-, образующиеся при гидролизе, и поэтому среда гидрофосфатов является слабощелочной.
Что касается дигидрофосфатов, то в их растворах наряду с гидролизом:
NaH2PO4 + HOH <=> H3PO4 + NaOH
H2PO4 - + HOH <=> H3PO4 + OH-
идет
процесс диссоциации
Причем второй процесс превалирует, поэтому все ионы ОН- (продукт гидролиза) нейтрализуются ионами Н+ (продукт диссоциации), а избыток последних обусловливает слабокислый характер среды растворов дигидрофосфатов.
Предлагаемая форма проведения проблемного эксперимента может быть осуществлена на уроке, в классе с углубленным изучением химии или на факультативном занятии [43].
Учитель делит класс на пять примерно равных по силе групп. Если занятие длится 2 ч, то группам (4–5 человек) дается задание провести все пять опытов, обсудить их результаты, написать уравнения происходящих процессов, сделать выводы. Затем проводится жеребьевка, в результате которой группа узнает номер опыта, результаты которого ей предстоит объяснить. Причем докладчика из группы назначает учитель, поэтому группа заинтересована, чтобы все ее представители работали и сумели объяснить и написать уравнения происходящих процессов. После выступления докладчика группа вносит исправления и дополнения. Затем остальные группы исправляют ошибки, дополняют ответы первой группы. Таким образом, итоговая оценка группы складывается из оценки выступления докладчика и оценки выступлений группы. Баллы группе приносят также замечания, дополнения к выступлениям других групп. В конце занятия учитель сообщает места, которые заняли группы, и предлагает группам самостоятельно поставить отличные оценки: 1-е место – трем представителям группы, 2-е место – двум, 3-е место – одному.
Если занятие длится 1 ч, то группам (4–5 человек) дается задание провести по одному из предложенных опытов, обсудить результаты этого опыта, написать уравнения происходящих процессов, сделать выводы. Затем проводится жеребьевка, в результате которой определяется очередность выступления групп. Дальнейший ход – как в предыдущей форме проведения занятия.
Возможна также и другая форма оценивания результатов: учитель предлагает учащимся каждой группы оценить работу членов своей группы, затем учитель спрашивает любого учащегося, и, если оценка, выставленная группой, подтверждается, вся группа получает заявленные оценки. Если же оценка оказывается ниже, все заявленные оценки снижаются на один балл.
Цель работы: рассмотреть взаимодействие веществ с продуктами гидролиза.
Реактивы и оборудование: алюминий (гранулы), оксид меди (II), твёрдый карбонат кальция, 10 %-ые растворы: карбоната натрия, хлорида железа (III), сульфата алюминия, концентрированный раствор хлорида железа (III); пробирки, спиртовка, спички.
Ход работы: Учащиеся получают задание: выполнить 5 опытов.
Опыт 1. Поместить гранулу алюминия в раствор карбоната натрия и нагреть реакционную смесь.
Опыт 2. Поместить гранулу алюминия в раствор хлорида железа(III) и нагреть реакционную смесь.
Опыт 3. Поместить в концентрированный раствор хлорида железа(III) кусочек карбоната кальция.
Опыт 4. Поместить в раствор сульфата алюминия немного (на кончике шпателя) оксида меди(II) и нагреть смесь.
Опыт 5. Учащимся предлагается более сложное задание.
УЧИТЕЛЬ. Вы знаете, что металлы, основные
оксиды и нерастворимые соли могут
взаимодействовать с растворами
средних солей, хотя на первый взгляд
это противоречит теоретическим
представлениям. Подумайте, какую еще
необычную для средних солей
реакцию можно провести. Проведите
ее и объясните наблюдаемые
Учитель предлагает проанализировать продукты реакции, объяснить происходящие явления, написать уравнения соответствующих реакций.
Обсуждение результатов эксперимента
Опыт 1. Соль Na2CO3 в растворе подвергается гидролизу по аниону:
CO32– + H2O <=>HCO3– + OH–,
Na2CO3 + Н2O <=>NaHCO3 + NaOH. (1)
Амфотерный оксид алюминия, образующий защитную пленку на поверхности алюминия, взаимодействует со щелочью, полученной по уравнению (1):
Al2O3 + 2NaOH + 3H2O = 2Na[Al(OH)4]. (2)
Алюминий, лишенный оксидной пленки, взаимодействует с водой:
2Al + 6H2O = 2Al(OH)3 ↓ + 3H2 . (3)
Гидроксид алюминия, образовавшийся в реакции (3), взаимодействует с гидроксидом натрия, полученным по реакции (1), т.к. Al(OH)3 – амфотерный гидроксид:
Al(OH)3 + NaOH = Na[Al(OH)4], (4)
Al(OH)3 + OH– = [Al(OH)4]–.
Поскольку гидроксид-ионы связываются гидроксидом алюминия, равновесие гидролиза (1) смещается вправо, идет вторая ступень гидролиза:
HCO3– + H2O <=>OH– + H2CO3 (H2O + CO2 ),
NaHCO3 + H2O <=>NaOH + H2CO3 (H2O + CO2 ). (5)
В ходе эксперимента учащиеся наблюдают выделение газов, которые представляют собой смесь водорода и углекислого газа.
Кроме того, наблюдается выпадение осадка. Если раствор карбоната натрия был разбавленным и взят не в избытке, то этот осадок не растворяется до конца. Поэтому есть возможность проанализировать этот осадок.
Учащиеся предполагают, что в осадке Al2(CO3)3. Однако при добавлении кислоты к осадку, промытому от раствора Na2CO3, углекислый газ не выделяется. Надо догадаться, что осадок – Al(OH)3. Гидроксид алюминия – амфотерный, он должен взаимодействовать и с кислотами, и со щелочами. При экспериментальной проверке, действительно, осадок растворяется и в соляной кислоте, и в растворе гидроксида калия:
Al(OH)3 + 3HCl = AlCl3 + 3H2O,
Al(OH)3 + 3H+ = Al3+ + 3H2O;
Al(OH)3 + KOH = K[Al(OH)4],
Al(OH)3 + OH– = [Al(OH)4]–.
Мы считаем, что не следует писать суммарное уравнение реакции алюминия с карбонатом натрия. Достаточно обсудить процессы, которые идут в исследуемой системе, описанные уравнениями реакций (1–5).
Опыт 2. Алюминий реагирует с раствором хлорида железа(III). Во-первых, алюминий более активный металл, чем железо, поэтому алюминий вытесняет железо из раствора его соли:
Al + FeCl3 = AlCl3 + Fe.
В осадке можно обнаружить частички железа, например, с помощью магнита.
Кроме того, было замечено выделение газа, и в осадке наряду с частицами железа обнаружены бурые частицы другого вещества. Анализ газа (характерный хлопок при поджигании) показал, что этот газ – водород.
Логично предположить, что хлорид железа(III) подвергается гидролизу по катиону:
Fe3+ + H2O <=>FeOH2+ + H+,
FeCl3 + H2O <=>FeOHCl2 + HCl. (1)
Получившаяся в результате реакции (1) кислота взаимодействует с алюминием и с образующимся железом с выделением водорода:
2Al + 6HCl = 2AlCl3 + 3H2 , (2)
2Al + 6H+ = 2Al3+ + 3H2 ;
Fe + 2HCl = FeCl2 + H2 , (3)
Fe + 2H+ = Fe2+ + H2 .
Алюминий и железо связывают ионы H+, равновесие гидролиза смещается в сторону его продуктов, гидролиз идет по 2-й и 3-й ступеням:
FeOH2+ + H2O <=>Fe(OH)2+ +H+,
FeOHCl2 + H2O <=>Fe(OH)2Cl + HCl;
Fe(OH)2+ + H2O <=>Fe(OH)3↓ + H+,
Fe(OH)2Cl + H2O <=>Fe(OH)3↓ + HCl.
Следовательно, бурые частицы осадка
– это гидроксид железа(III), не
растворимый в воде и щелочах,
но растворимый в кислотах. Это
можно проверить
2Fe(OH)3 + 3H2SO4 = Fe2(SO4)3 + 6H2O,
Fe(OH)3 + 3H+ = Fe3+ + 3H2O.
В растворе щелочи осадок Fe(OH)3 не растворяется.
Опыт 3. Учащиеся знают, что нерастворимые соли (СaCO3) не должны взаимодействовать с другими солями. Однако в системе FeСl3 + CaCO3 они наблюдают бурное выделение газа и выпадение бурого осадка. Для выяснения, какой это газ, в реакционную пробирку вносят горящую лучину, она гаснет. Следовательно, выделяющийся газ – CO2. Анализ осадка проводят аналогично опыту 2. Итак, при взаимодействии FeCl3 c CaCO3 образовались углекислый газ и гидроксид железа(III). Учащиеся объясняют, что образовавшаяся при гидролизе FeCl3 соляная кислота реагирует с CaCO3:
FeCl3 + H2O <=>FeOHCl2 + HCl,
Fe3+ + H2O <=>FeOH2+ + H+;
2HCl + CaCO3 = CaCl2 + H2O + CO2 ,
2H+ + CaCO3 = Ca2+ + H2O + CO2 .
Поскольку ионы H+ реагируют с CaCO3, то гидролиз FeCl3 идет по 2-й и 3-й ступеням:
FeOH2+ + H2O <=>Fe(OH)2+ + H+,
Fe(OH)2+ + H2O <=>Fe(OH)3 + H+.
Опыт 4. Учащиеся замечают изменение окраски раствора. Бесцветный раствор становится голубым, что явно свидетельствует о появлении в растворе гидратированных ионов меди Cu2+. Как это объяснить, если известно, что средние соли не реагируют с основными оксидами?
Сульфат алюминия гидролизуется по катиону:
Al3+ + H2O <=>AlOH2+ + H+,
Al2(SO4)3 + 2H2O <=>2AlOHSO4 + H2SO4;
AlOH2+ + H2O <=>Al(OH)2+ + H+,
2AlOHSO4 + 2H2O <=> (Al(OH)2)2SO4 + H2SO4.
Образующаяся серная кислота при нагревании взаимодействует с оксидом меди(II). Ионы Cu2+ переходят в раствор и придают ему голубую окраску.
CuO + H2SO4 = СuSO4 + H2O,
CuO + 2H+ = Сu2+ + H2O.
Учащиеся анализируют раствор на содержание ионов Cu2+. Для этого прибавляют к фильтрату раствор щелочи, наблюдается выпадение голубого осадка:
CuSO4 + 2NaOH = Cu(OH)2↓ + Na2SO4,
Cu2+ + 2OH– = Cu(OH)2↓.
Опыт 5. Учащиеся исходят из следующих представлений. При гидролизе соли может образоваться кислота. Кислоты взаимодействуют с металлами, стоящими в ряду активности до водорода, основными оксидами, нерастворимыми солями (если при этом образуется газ), нерастворимыми основаниями и амфотерными гидроксидами. Первые три случая рассмотрены выше (см. опыты 2–4), следовательно, можно предположить, что растворы солей, гидролизующихся по катиону, будут растворять основания и амфотерные гидроксиды. Продукт такого гидролиза – кислота – будет взаимодействовать с основаниями и амфотерными гидроксидами. Например, в растворе Al2(SO4)3 растворится основание Cu(OH)2, а в растворе FeCl3 растворится амфотерный гидроксид Al(OH)3:
Al2(SO4)3 + 2H2O <=>2AlOHSO4 + H2SO4,
H2SO4 + Cu(OH)2 = CuSO4 + 2H2O;
FeCl3 + H2O <=>FeOHCl2 + HCl,
3HCl + Al(OH)3 = AlCl3 + 3H2O.
Учащиеся проводят эти реакции, доказывая, что их гипотеза верна: Cu(OH)2 растворяется в растворе сульфата алюминия, а Al(OH)3 растворяется в растворе хлорида железа(III).
Можно показать такой «фокус». Нерастворимое основание Fe(OH)3 взаимодействует с раствором FeCl3, осадок растворяется:
FeCl3 + H2O <=>FeOHCl2 + HCl,
Fe(OH)3 + 2HCl = FeОНCl2 + 2H2O.
(Советуем учителю заранее
Вывод. Если к раствору соли, подвергающейся гидролизу, добавить вещество, способное взаимодействовать с кислотами или щелочами, то это вещество взаимодействует с продуктами гидролиза – кислотами или щелочами.
Предлагаемая форма проведения проблемного эксперимента может быть осуществлена на уроке, в классе с углубленным изучением химии или на факультативном занятии [42, 43].