Автор: Пользователь скрыл имя, 17 Января 2012 в 16:06, шпаргалка
РАбота содержит ответы на 41 экзаменационный вопрос по "Концепции современного естествознания"
1 вопрос. Естественнонаучная и гуманитарная культура.
...
41. Самоорганизация в живой и неживой природе.
В информатике:
17. Принцип неопределённости Гейзенберга
в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых , описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.
В квантовой механике принцип неопределённости Гейзенбе́рга (или Га́йзенберга) устанавливает, что существует ненулевой предел для произведения дисперсий сопряжённых пар физических величин, характеризующих состояние системы. Принцип неопределённости обнаруживается также в классической теории измерений физических величин.
Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q, либо импульс p. При этом результаты измерений будут случайными величинами, среднеквадратические отклонения которых от средних значений будут удовлетворять соотношению неопределённостей , где – постоянная Дирака. Поскольку любое измерение изменяет состояние каждой частицы, при одном измерении нельзя одновременно измерить значения и координаты и импульса. Для ансамбля частиц уменьшение дисперсии при измерении физической величины приводит к увеличению дисперсии сопряжённой физической величины. Считается, что принцип неопределённости связан не только с возможностями экспериментальной техники, но и показывает фундаментальное свойство природы.
Сущность принципа дополнительности Бора в физике такова. В любом опыте с микрообъектами наблюдатель получает информацию не о "свойствах объектов самих по себе", но о свойствах объектов в связи с конкретной ситуацией, включающей в себя, в частности, и измерительные приборы. Информацию об объекте, полученную при некоторых определенных условиях, надо рассматривать как дополнительную к информации, полученной при других условиях. Причем сведения, полученные при разных условиях, нельзя простым образом складывать, суммировать, комбинировать в некую единую картину; они отражают разные (дополняющие стороны) единой реальности, отвечающие исследуемому объекту. Свое прямое выражение принцип дополнительности находит, в частности, в идее корпускулярно-волнового дуализма и в соотношениях неопределенностей.
При́нцип суперпозиции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:
Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.
Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:
Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.
18. Закономерность
- объективная,
повторяющаяся при
1) неисчерпаемостью
материи и незамкнутостью
2) невозможностью реализации множества тенденций развития, заложенных в прошлых состояниях систем
3) возникновением
в процессе развития
Историческая
закономерность - то, что должно произойти
в силу сложившихся условий (преобразования
Петра I, отмена крепостного
права, падение СССР и т.д.).
Вопрос 19 Энтропология.
Энтропи́я (от греч. ἐντροπία —
поворот, превращение) в естественных
науках — мера
беспорядкасистемы, состоящей из многих элементов. В частности, в статистической
физике — меравероятности
впервые было введено Клаузиусом в термодина
,
где dS — приращение энтропии; δQ — минимальная теплота, подведенная к системе; T — абсолютная температура процесса;
Термодинамическая энтропия — термодинамическая функция, характеризующая меры неупорядоченности системы, то есть неоднородности расположения движения её частицтермодинамической системы.
Энтропия — функция состояния системы, равная в равновесном процессе количеству теплоты, сообщённой системе или отведённой от системы, отнесённому к термодинамической температуре системы.
Энтропия — функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия — функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.
Вопрос 20. Второе начало термодинамики.
Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.
Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.
Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не должна равняться 0.
Второе начало
термодинамики является постула
Существуют несколько эквивален
Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло Q1 у нагревателя, отдав Q2 холодильнику и совершив при этом работу A = Q1 − Q2. После этого воспользуемся процессом Клаузиуса и вернем тепло Q2 от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.
С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.
Таким образом, постулаты Клаузиуса и Томсона эквивалентны.
Другая формулировка второго начала термодинамики основывается на понятии энтропии:
Информация о работе Шпаргалка по "Концепции современного естествознания"