Автор: Пользователь скрыл имя, 18 Декабря 2011 в 20:54, шпаргалка
Работа содержит ответы на вопросы по дисциплине "Математический анализ".
1Натуральные
числа – 1,2,3,4, …., счёт предметов,
указание порядкового номера. Натуральные
числа также называют
2 Z1±Z2=(A1±A2)+i(B1±B2)
Z1*Z2=(A1+iB1)*(A2+iB2)
Z1/Z2=(a1+ib1)(a2-ib2)/(a2+
i(b1a2-a1b2)\a2²+b2²=(a1a2+
a1b2/a2²+b2²)
3 Тигонометрическая форма комплексного числа
Z=a+ib=r*cosφ+i*r*sinφ=r*(
r – модуль; φ – аргумент. b – y; a – x.
4 Zª=rª(cos Aφ+i*sin Aφ)
5 ª√Z=ª√r(cos φ+2πk/а +i *sin φ+2πk/a) k∈(1;2;3…a-1)
Все корни А-ой степени лежат на окружности r=| Z |¹\а и являются вершинами правильного А-угольника, вписанного в эту окружность.
6 Переменная вел. Х, принимающая последовательно ( с возрастанием номера n ) значения х1,х2,х3..хN называется числовой последовательностью
1,1,1,1,1…1
1,1/2,1/3…1/N
1,-1,1,-1…(-1)ª
Xn,n∈N
Число А наз. пределом последовательности Хn если для любого сколь угодно малого положит. числа E>0 найдётся такой номер N(E), что как только n>N(E) то имеет место неравенство | Xn – A | < E
lim Xn = A
n→∞
Число А есть предел последовательности Xn если для любого ε > 0 найдётся такой номер N, начиная с которого (при n>N) все члены последовательности будут заключены в ε-окрестности какой бы она узкой ни была. Вне этой окрестности может быть лишь конечное число членов этой последовательности.
7 Если последовательность Хn монотонна и ограничена, то она имеет предел (сходится).
Cвойства пределов:
если Хn=С то lim Xn=C
n→∞
пусть
lim Xn=A, a lim Yn=B тогда lim (Xn±Yn)=A±B
n→∞ n→∞ lim (Xn*Yn)=A*B
если Xn≤Yn для n∈N то lim Xn ≤ lim Yn
8 Eсли Хn сходится (имеет предел) то Хn ограничена
Последовательность Xn; n∈N наз. ограниченной если существует положительное число М, что выполняется нер-во | Xn |≤M; n∈N
Если lim Xn=0, то Xn; n∈N наз. БМВ обознач (αn,βn,γn)
n→∞
Св-ва БМВ:
lim αn=0
n→∞
lim (αn±βn)=0
n→∞
lim (Xn*αn)=0; если Xn-ограничена
n→∞
В произведении БМВ можно заменять на эквивалентную БМ. В алгебраической сумме замену можно производить в том случае если не происходит сокращения БМ одного порядка с Х:
sin X ~ X eª-1 ~ a
tg X ~ X (1+x)ª ~ ax
1 – cos X ~ X²/2 arctg X ~ X
LOGe(1+X) ~ X xª-1 ~ aLNx
9 Сумма эл-тов числовой последовательности наз. числовым рядом.
Сумма n членов ряда – n частичная сумма ряда
Если при n→∞ lim Sn=S, то ряд сходящийся, S сумма ряда .
Ряд наз. сходящимся если сущ. конечный предел последовательности его частичных сумм.
Прим:
при каких q сходится и расходится ?
сходится к сумме S=a/1-q при | q |<1 и расход-ся при | q |≥1
10 Признак сравнения двух знакоположит-х рядов.
есть 2 знакполож. ряда ∑Ak,∑Bk так что 0≤Ak≤Bk k∈N
тогда если ∑Bk⇒ то ∑Ak тоже ⇒ и наооборот если меньший ряд не сходится то и больший тоже.
11 Признак Даламбера
∑Un c положительными членами сущ. lim Un+1/Un =l
то ряд сходится если l<1 и расходится если l>1, если l=1 то вопрос о сходимости нерешён.
Признак Коши
∑An – знакополож. ряд lim ª√An=q
q<1 – сходится ; q>1 – расходится.
12 Знакопеременный ряд а1-а2+а3-а4…+ (-1)в степ.(n-1)*An
An>0
Признак Лейбница:
Если члены ряда (знакопер) убывают а1>a2>a3>…An и
предел Аn при n→∞ =0 то ряд сходится
пример 1-1/2+1/3-1/4…+(-1)(n-1)*1/n
13 Имеет
место функциональная
y=kx+b – линейная ф-ия
y=ax²+bx+c – квадратичная ф-ия
Обратная ф-ия – ф-ия x=φ(y) наз. обратной ф-ией к прямой ф-ии y=f(x) если x=φ(f(x)) для всех х∈Х
Графики
взаимно обратных ф-ий
y=Xª и y=LOGxA – примеры
14 Число B называется пределом ф-ии в f(x) при x, стремящемуся к x0 (или в точке x0) если для любого, сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ(ε)>0 что для всех х не равных х0 и удовлетворяющих условию | x-x0 |<δ выполняется нерав-во | f(x)-B | < ε
lim f(x)=B
x→x0
Смысл состоит в том, что для всех значений х, достаточно близких к х0, значения ф-ии f(x) как угодно мало отличаются от числа В (по модулю)
15 lim f(x)=B
x→x0
Если B=f(x0), то ф-ия f(x) – непрерывна в точке х0.
св-ва :
lim c=c
x→x0
если f(x)=b, φ(x)=c то lim (f(x)±φ(x))=b±c
x→x0
Если f(x)≤φ(x)≤g(x) и lim f(x)=lim g(x) =b то lim φ(x)=b
если при этом b=f(x0); c=φ(x0) то св-во 2 можно записать:
(Если f(x) или φ(х) непрерывны в т. х0 то в т.х0
непрерывны сумма, разность, произведение и
частное(φ(х0))≠0 этих функций
Если ф-ия непрерывна в каждой точке отрезка, то она непрерывна на этом отрезке
16 Линейная ф-ия непрерывна в любой точке А∈(-∞;+∞)
y=kx+b=f(x)
f(A)=kA+b
k≠0 ⇒ | f(x)-f(a) |<ε | kx-b-ka+b | <ε
| k (x-f) | <ε
| k |*| x-a | <ε
| x-a | < ε/| k |=δ(ε)
y=ax²+bx+c (-∞;+∞)
17 y=Bª (B>0)
Докажем, что y=Bª непрерывна на (-∞;+∞)
lim Bª=1
a→0
| Bª-1 | <ε 1) B=1
2) B>1
-ε < Bª-1 < ε 1-ε < Bª < ε+1
LOGb(1-ε)<a<LOGb(1+ε)
min {-LOGa(1-ε); LOGa(1+ε)}= δε
| x | < δε
LOGaB
18 y=cos x (-∞; +∞)
| cos x – cos a | < ε
| 2 sin (x-a)/2 + sin (x+a)/2 | < ε
2 | sin (x-a)/2 | + | sin (x+a)/2 | < ε
2 | sin (x-a)/2 | < ε
| x-a | < ε =δ(ε)
y=sin x (-∞; +∞)
y=tg x=sin x/cos x кроме x=π/2+πk
y=ctg x=cos x/sin x кроме x=πk
19 Первым
замечательным пределом
lim sin x/x=1