Роль математики в медицине

Автор: Пользователь скрыл имя, 11 Декабря 2011 в 12:25, реферат

Описание работы

Цель данной реферативной работы – рассмотреть, как математика используется в медицине.
В рамках поставленной цели были поставлены следующие задачи:
1. Рассмотреть, как математические методы применяются в медицине;
2. Изучить значение математических моделей в медицине.

Содержание

Введение
Применение математических методов
Характеристика математических моделей
Значение математических моделей
Математические модели в медицине
4. Математика и информатика в медицине
5. Заключение
6. Список литературы

Работа содержит 1 файл

Реферат роль математики в медицине.doc

— 141.00 Кб (Скачать)

Математическое  моделирование систем является вторым кардинальным направлением применения математической модели в медицине. Основным понятием, используемым при  таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное  с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине). Иногда можно встретить и устаревшее значение термина «математическое моделирование» как процесса анализа модели на ЭВМ. Чтобы избежать путаницы, во втором случае используют понятие «вычислительный эксперимент».

В математическом моделировании выделяют несколько  этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое  привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. Модели в зависимости от используемого математического аппарата подразделяются на несколько классов. В медицине и биологии чаще всего применяются описания с помощью уравнений. В связи с созданием компьютерных методов решения так называемых интеллектуальных задач начали распространяться логико-семантические модели. Этот тип моделей используется для описания процессов принятия решений, психической и поведенческой деятельности и других явлений. Часто они принимают форму своеобразных «сценариев», отражающих врачебную или иную деятельность. При формализации более простых процессов, описывающих поведение биохимических, физиологических систем, задач управления функциями организма, применяются уравнения различных типов.

Если исследователя  не интересует развитие процессов во времени (динамика объекта), можно ограничиться алгебраическими уравнениями. Модели в этом случае называются статическими. Несмотря на кажущуюся простоту, они  играют большую роль в решении практических задач. Так, в основе современной компьютерной томографии лежит теоретическая модель поглощения излучения тканями организма, имеющая вид системы алгебраических уравнений. Решение ее компьютером после преобразований представляется в виде визуальной картины томографического среза.

Для описания свойств  систем, изменяющихся во времени, используются динамические модели, чаще всего в  виде обыкновенных дифференциальных уравнений:

где х1, х2..., xn —  переменные, а1, а2,... am — параметры модели, u1, u2,..., ue — внешние воздействия на систему, t — время, n = 1, 2,..., N.

Величина  —  производная xi по времени (скорость изменения xi). Разница между переменными  х и параметрами а в уравнении  заключается в следующем. К переменным относятся такие величины, которые могут влиять друг на друга и согласованно изменяться под действием внешних воздействий во время изучения объекта. Параметры отражают те свойства объекта, которые характеризуются неизмененными значениями в течение всего времени изучения объекта (модель с неизмененными постоянными параметрами) или меняются со временем, но вне всякой связи с изменением переменных (модель с изменяющимися параметрами). Параметрами модели являются коэффициенты описывающих ее уравнений. Следует отличать указанный смысл термина «параметры модели» от принятого в биомедицинской литературе, где часто под параметрами понимаются любые количественные характеристики состояния организма или его систем.

После записи математической модели проводится ее анализ с точки зрения адекватности задаче, которую планируется решать с ее помощью, — верификация модели. Верификация состоит в том, что на созданной модели воспроизводится (например, с помощью ЭВМ) круг моделируемых явлений или процессов, для которых имеется достоверный экспериментальный материал. При определенном совпадении результатов расчета с экспериментальными данными модель считается адекватной. В противном случае необходимо уточнять исходные концепции и допущения, а затем снова верифицировать модель. Удовлетворяющая исследователя модель анализируется и обсчитывается на ЭВМ, что и называется вычислительным экспериментом. При анализе результатов вычислительных экспериментов следует учитывать, что модель — всегда лишь упрощенное описание реальных явлений. Поэтому выводы, получаемые с помощью моделирования, требуют дополнительного осмысливания.

Компартментальное моделирование распространено в  медицине и биологии. Согласно определению  американского фармаколога и  биохимика Шеппарда, компартмент  — это некоторое количество вещества, выделяемое в биологической системе и обладающее свойством единства, поэтому в процессах транспорта и химических преобразований его можно рассматривать как целое. Например, в качестве особых компартментов рассматривают весь кислород в легких, всю углекислоту в венозной крови, количество введенного препарата в межклеточной жидкости, запас гликогена в печени и т.п. Модели, в которых исследуемая система представляется в виде совокупности компартментов, потоков вещества между ними, а также источников и стоков всех веществ, называются компартментальными.

В компартментальной  модели каждому компартменту соответствует  своя переменная состояния — количественная характеристика компартмента (концентрация, масса вещества, парциальное давление газа и т.п.). Вещество попадает в систему через источники — естественные (физиологические процессы внешнего дыхания, например источник кислорода) или искусственные (капельница или инъекции); удаляются через стоки — естественные (например, почка) или искусственные (например, аппаратура гемосорбции). Темпы (скорости) потоков вещества из одного компартмента в другой часто предполагаются пропорциональными концентрациям или количествам вещества в компартменте. Поэтому компартментальные модели описываются системой дифференциальных уравнений, число которых N равно числу рассматриваемых компартментов:

где xi — количественная характеристика i-го компартмента (количество или концентрация), i, k = 1, 2,..., N; qij —  так называемые транспортные коэффициенты, произведение qijxj определяет скорость потока в i-й компартмент из j-го (индекс О относится к среде), goi — приток в i-й компартмент из окружающей среды.

Компартментальные модели широко применяются в фармакокинетике  для анализа процессов транспорта и накопления в организме лекарственных препаратов. Такие модели часто называют камерными. Камера — условно выделяемая часть организма (иногда она может соответствовать конкретной части — плазме крови, межклеточной жидкости, в которой данное вещество можно считать распределенным равномерно). Очевидно, что вещество в каждой камере можно рассматривать как компартмент. Если в модели имеется несколько веществ одновременно, то одной камере соответствует несколько компартментов (например, количество кислорода в межклеточной жидкости и количество препарата в ней же). Понятие «камера» является, т.о., более узким по сравнению с компартментом. Поэтому камерные модели используются в фармакокинетических моделях для исследования поведения только одного вещества — введенного препарата.

Интегрированные и минимальные модели. При математическом моделировании выделяют два независимых круга задач, в которых используют модели. Первый носит теоретический характер и направлен на расшифровку структуры систем, принципов ее функционирования, оценку роли и потенциальных возможностей конкретных регуляторных механизмов и т.п. Модели, создаваемые для таких задач, носят название интегрированных (интегральных). В них стремятся наиболее полно учесть имеющиеся данные о структуре системы, ввести максимально возможное число параметров и переменных. По мере накопления знаний о биологическом объекте в интегрированных моделях наблюдается тенденция к усложнению структуры и повышению размерности описывающих их уравнений.

Другой круг задач имеет более практическую направленность. В медицине они применяются, например, с целью получения конкретных рекомендаций для индивидуального больного или группы однородных больных: определение оптимальной суточной дозы препарата для данного больного при различных режимах питания, физической нагрузки и т.д. В моделях этого типа сознательно ограничивается сложность описания, поэтому они часто называются минимальными.

Если для интегральных моделей достаточно выполнить требования верификации, т.е. обеспечить качественное совпадение основных процессов в модели и оригинале, непротиворечивость модели исходным теориям и фактам, то при разработке минимальных моделей требования к их адекватности возрастают. Индивидуализация математического описания требует специальной процедуры, которая в теории управления и кибернетике называется идентификацией. Идентификация — количественный выбор параметров модели, дающий наиболее близкое совпадение с результатами контрольных экспериментов (например, в смысле минимума среднеквадратической ошибки или по другим статистическим критериям). Разработаны многочисленные методы идентификации, позволяющие решить эту задачу для линейных моделей. В нелинейных случаях для идентификации применяют компьютерные процедуры (в т.ч. эвристические). 

Метод черного  ящика. Первым примером упрощенного описания живых систем в медицине и биологии была модель черного ящика, когда все выводы делались только на основе изучения реакций объекта (выходов) на те или иные внешние воздействия (входы) без учета внутренней структуры объекта. Соответствующее описание объекта в понятиях вход — выход оказалось неудовлетворительным, т.к. оно не учитывало изменения его выходных реакций на одно и то же воздействие из-за влияния внутренних изменений в объекте. Поэтому метод черного ящика уступил место методам пространства состояний, в которых описание дается в понятиях вход — состояние — выход. Наиболее естественным описанием динамической системы в рамках теории пространства состояний является компартментальное моделирование, где каждому компартменту соответствует одна переменная состояния. В то же время соотношения вход — выход по-прежнему широко используются для описания существенных свойств биологических объектов.

Выбор тех или  иных медицинских методов при  описании и исследовании биологических  и медицинских объектов зависит как от индивидуальных знаний специалиста, так и от особенностей решаемых задач. Например, статистические методы дают полное решение задачи во всех случаях, когда исследователя не интересует внутренняя сущность процессов, лежащих в основе изучаемых явлений. Когда знания о структуре системы, механизмах ее функционирования, протекающих в ней процессах и возникающих явлениях могут существенно повлиять на решения исследователя, прибегают к методам математического моделирования систем.

 

                     5. Заключение

Основное  положение настоящей работы состоит  в том, что математические методы применимы к самому широкому кругу  вопросов - от физики элементарных частиц до моральных проблем. Удобно (хотя вовсе не обязательно) рассматривать  некую иерархию уровней. По мере перехода на более абстрактные уровни математические методы оказываются менее разработанными и применять их становится все труднее. Тем не менее при правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий, но, в конечном счете, они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, и идут дальше их.

     Существенно важен вопрос о том, в каких  областях применимы математические методы. Потребность в математическом описании появляется при любой попытке  вести обсуждение в точных понятиях и что это касается даже таких  сложных областей, как искусство  и этика, не говоря уж о медицине.

     В данной реферативной работе мы постарались  охарактеризовать роль математики в  такой сложной области применения как медицина. Были рассмотрены такие  вопросы как применение математики в медицине и значение математических моделей.

     Очевидно, что математика согласована и  с информатикой, выполняя большую  роль в медицине.

 

                6. Список литературы

 

1. Бесчастный А.А., Немцов А.В. Математические модели: сущность и применение // Журнал невропатологии и психиатрии - 2000. №4. – 16с.

2. Леонов В.П., Ижевский П.В. Математика и медицина.// Международный журнал медицинской практики. - 2005. - № 4, 7-13с.

Информация о работе Роль математики в медицине