Автор: Пользователь скрыл имя, 11 Декабря 2011 в 12:25, реферат
Цель данной реферативной работы – рассмотреть, как математика используется в медицине.
В рамках поставленной цели были поставлены следующие задачи:
1. Рассмотреть, как математические методы применяются в медицине;
2. Изучить значение математических моделей в медицине.
Введение
Применение математических методов
Характеристика математических моделей
Значение математических моделей
Математические модели в медицине
4. Математика и информатика в медицине
5. Заключение
6. Список литературы
Курский Базовый
медицинский колледж
Реферат
«Роль математики в медицине»
Оглавление
4. Математика и информатика в медицине
5. Заключение
6. Список литературы
Несколько лет назад
разговоры о возможности
Хорошо известно, что один из подходов к описанию картины природы - это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология. Мы начинаем с основных материальных элементов реального мира, т. е. с субатомного уровня, и заканчиваем необычайно разносторонними проявлениями духовной жизни человеческого общества. В этой последовательности уровней организация и сложность непрерывно повышаются. На каждом уровне действуют свои собственные законы, и поэтому их можно изучать до некоторой степени независимо друг от друга. Однако любой из них нерасторжимо связан с закономерностями, действующими на более низких уровнях. Так, законы физики и химии отчасти распространяются и на психологию, хотя понятия и законы последней выходят за пределы физических и химических законов.
Цель данной реферативной работы – рассмотреть, как математика используется в медицине.
В рамках поставленной цели были поставлены следующие задачи:
1.
Рассмотреть, как
2.
Изучить значение
1. Применение математических
методов в медицине
Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб. Мы не собираемся углубляться здесь в эти философские рассуждения или обсуждать отдельные их детали, а хотим лишь подчеркнуть, что описанная последовательность уровней приближенно соответствует порядку возрастания трудностей при использовании научных методов и проведении математических исследований.
Как мы уже отмечали, прикладная математика добилась крупных и бесспорных успехов в области физики и химии, однако в данной работе мы не будем касаться этих вопросов. Математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций.
При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне. Другим примером может служить область медицинской диагностики. Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах1.
Именно в такого рода ситуациях, когда разум одного человека не способен справиться со сложностями стоящих перед ним задач и описать их решение даже в общей словесной форме, специалисты в области так называемых неточных наук (включая, разумеется, биологию и медицину) часто утверждают, что математический анализ несовершенен, неуместен, приводит к ошибочным заключениям или невозможен, и поэтому его лучше избегать. Это возражение содержит рациональное зерно в том смысле, что современная математика, возможно, еще недостаточно совершенна; однако пройдет время, и мы увидим, что справедливо как раз обратное.
В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине.
Основная
причина недоверия к
До сих пор мы имели в виду главным образом те биологические и медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых общих целей. Эту область довольно расплывчато называют исследованием операций. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с биологией и медициной. Лесоводство, животноводство, общие вопросы сельскохозяйственного производства, проектирование больниц и организация медицинского обслуживания - таковы лишь немногие вопросы, относящиеся к этой категории.
Например, в медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение.
Любая разумная научная гипотеза имеет хотя бы некоторые количественные аспекты, однако в данной работе нас больше интересуют такие математические описания, которые достаточно детальны, чтобы заслуживать названия математической модели. Но такая модель имеет в точности такой же логический статус, что и любая гипотеза с гораздо меньшим количественным содержанием. Это означает, что математическая модель дает частичное описание определенных аспектов реальной действительности и ее справедливость целиком зависит от точности этого изображения2.
Учитывая крайнюю сложность большинства биологических систем, нетрудно понять, что в биологии простые и легко поддающиеся исследованию математические модели представляют собой чрезвычайно грубые приближения. И, что еще хуже, математики могут с энтузиазмом приняться за глубокую теоретическую разработку моделей, неадекватность которых известна заранее, только потому, что это не составляет большого труда (во всяком случае, для них). Может также случиться, что математическому анализу будет подвергнута вполне правдоподобная модель, но она не удовлетворит требованиям научного метода, поскольку нельзя найти, способа проверить полученные результаты. Значительная часть математической биологии не защищена от такого рода возражений, которые, если придавать им слишком большое значение, могут причинить большой вред. Биологи и врачи совершенно справедливо с подозрением относятся к любой работе, которая представляет собой лишь клубок математических абстракций и не вписывается в непрерывный процесс развития науки.
По нашему мнению, математическая модель, если ее правильно понимать и правильно применять, имеет точно такой же логический статус, как и любая другая научная гипотеза, и поэтому при обращении с ней и проверке ее справедливости необходимо исходить из тех же критериев. Именно потому, что модель формулирует задачу, так сказать, в "очищенном" виде, значительно легче почувствовать трудности этой задачи. С этими трудностями можно частично справиться путем отыскания лучших способов исследования моделей, достаточно сложных для близкого соответствия с реальными процессами (примером может служить моделирование сложных случайных процессов на вычислительной машине). Однако это еще не все простые модели, отражающие лишь немногие свойства реального процесса, важны тем, что они дают общее представление о процессе, тогда как для достижения статистического соответствия с фактическими данными необходимы более сложные модели. Это противоречие между требованиями, которым должны удовлетворять модели, дающие общее представление о процессе, и модели, дающие реальное его изображение, имеет существенно важное значение в математической биологии, и необходимо в полной мере отдавать себе отчет в связанных с ним трудностях.
Допустим,
что мы построили вначале
Простейшее исследование повторяющихся эпидемий вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий - периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями3. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете, успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений4.