Автор: Пользователь скрыл имя, 11 Декабря 2011 в 12:25, реферат
Цель данной реферативной работы – рассмотреть, как математика используется в медицине.
В рамках поставленной цели были поставлены следующие задачи:
1. Рассмотреть, как математические методы применяются в медицине;
2. Изучить значение математических моделей в медицине.
Введение
Применение математических методов
Характеристика математических моделей
Значение математических моделей
Математические модели в медицине
4. Математика и информатика в медицине
5. Заключение
6. Список литературы
Одно из больших преимуществ правильно построенной математической модели состоит в том, что она дает довольно точное описание структуры исследуемого процесса. С одной стороны, это позволяет осуществлять ее практическую проверку с помощью соответствующих физических, химических или биологических экспериментов. С другой стороны, математический анализ расширяет наши теоретические знания. Если основные уравнения можно решить аналитическим путем, то, подставляя в них различные значения рассматриваемых параметров, мы автоматически получаем решение всех возможных вариантов задачи.
По возможности нужно применять чисто математические методы исследования модели, так как это позволяет наиболее полно использовать мощные аналитические возможности. К сожалению, во многих случаях получить решение основных уравнений аналитическими методами не удается и необходимо обращаться к численным решениям. Численный анализ, который рассматривается далее, полон ловушек, подстерегающих неосторожного исследователя. Однако при соблюдении достаточной осторожности численные решения часто дают значительный объем полезной информации о свойствах модели. По мере усложнения моделей и приближения их к реальным процессам уменьшается возможность получения лаконичных изящных решений в явном виде, и все более возрастает необходимость обращаться к тем или иным формам численных решений.
Может оказаться, что полученные дифференциальные уравнения движения для некоторого сложного биологического процесса (это могут быть дифференциальные уравнения в частных производных высокого порядка) не только неразрешимы аналитически, но и не поддаются решению существующими методами численного анализа. В этом случае наиболее целесообразно применение физического моделирования. Как и типичные методы численного анализа, физическое моделирование обладает тем недостатком, что оно не позволяет получить аналитические выражения для рассматриваемого процесса. Однако этот недостаток компенсируется такими преимуществами, как простота и гибкость метода и возможность избежать сложных численных расчетов, полагаясь на статистические свойства достаточно большого числа повторных вычислений.
Хотя в принципе такое моделирование дает не больше информации, чем чисто математические расчеты, на практике оно обеспечивает значительное приближение к условиям реального эксперимента. Моделирование может приобрести особенно важное значение при изучении сложных биологических систем и уже широко применяется при исследовании операций. Многие задачи исследования операций возникают из необходимости внедрить некоторую близкую к оптимальной схему действия, однако часто оказывается, что характер задачи не позволяет провести эксперименты в реальных условиях. В этих случаях возможно экспериментирование на достаточно сложных моделированных системах, обеспечивающих высокую степень приближения к реальности.
Математические методы в медицине — совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне.
Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете. Так, многие явления физики, химии, техники описываются М.м. достаточно полно. В результате эти науки достигли высокой степени теоретических обобщений. В биологических науках М.м. пока еще играют подчиненную роль из-за сложности объектов, процессов и явлений, вариабельности их характеристики, наличия индивидуальных особенностей. Систематические попытки использовать М.м. в биомедицинских направлениях начались в 80-х гг. 19 в. Общая идея корреляции, выдвинутая английским психологом и антропологом Гальтоном (F. Galton) и усовершенствованная английским биологом и математиком Пирсоном (К. Pearson), возникла как результат попыток обработки биомедицинских данных. Точно так же из попыток решить биологические проблемы родились известные методы прикладной статистики. До настоящего времени методы математической статистики являются ведущими М.м. для биомедицинских наук. Начиная с 40-х гг. 20 в. математические методы проникают в медицину и биологию через кибернетику и информатику. Наиболее развиты М.м. в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря М.м. значительно расширилась область познания основ жизнедеятельности и появились новые высокоэффективные методы диагностики и лечения; М. м. лежат в основе разработок систем жизнеобеспечения, используются в медицинской технике.
Все большую роль во внедрении М.м. в медицину играют ЭВМ (см. Электронная вычислительная машина). В частности, применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. М.м. смыкаются с методами кибернетики и информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики.
Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения). Описание проводят в двух основных направлениях. Для обработки биомедицинских данных используют различные методы математической статистики, выбор одного из которых в каждом конкретном случае основывается на характере распределения анализируемых данных. Эти методы предназначены для выявления закономерностей, свойственных биомедицинским объектам, поиска сходства и различий между отдельными группами объектов, оценки влияния на них разнообразных внешних факторов и т.п. На основе определенной гипотезы о типе распределения изучаемых данных в серии наблюдений и использования соответствующего математического аппарата с той или иной достоверностью устанавливаются свойства биомедицинских объектов, делаются практические выводы, даются рекомендации. Описания свойств объектов, получаемые с помощью методов математической статистики, называют иногда моделями данных. Модели данных не содержат какой-либо информации или гипотез о внутренней структуре реального объекта и опираются только на результаты инструментальных измерений.
Другое направление связано с моделями систем и основывается на математическом описании объектов и явлений, содержательно использующих сведения о структуре изучаемых систем, механизмах взаимодействия их отдельных элементов. Разработка и практическое использование математических моделей систем (математическое моделирование) составляют перспективное направление применения М.м. в биологии и медицине.
Статистические методы обработки стали привычным и широко распространенным аппаратом для работников медицины и здравоохранения, например диагностические таблицы, пакеты прикладных программ для статистической обработки данных на ЭВМ (см. Программирование). Однако использование этой группы М.м. вызвало ряд проблем принципиального характера, связанных с выбором адекватного задаче метода статистической обработки и содержательно обоснованного его применения. Эти факторы послужили причиной роста требований к качеству статистической обработки экспериментальных и клинических данных, в т.ч. для публикации результатов исследований в научных журналах. Ранее считалось достаточной обработка данных простейшими статистическими методами и простыми формами корреляционного и регрессионного анализа. Это, как показал опыт, далеко не всегда позволяет выявить сущность исследуемых явлений и, более того, не дает гарантий в отношении надежности результатов. В СССР сложившееся положение частично вызвано недостаточным количеством ЭВМ, а в основном — недостаточным уровнем подготовки работников медицины и здравоохранения в области прикладной статистики.
Существует несколько
основных понятий, необходимых для
эффективного использования методов
современной многомерной
Статистическая совокупность — понятие, лежащее в основе всех статистических методов. Объекты, с которыми имеют дело в медицине, обладают большой вариабельностью — их характеристики меняются во времени и пространстве в зависимости от многих факторов, а также существенно отличаются друг от друга, Характеристики таких объектов обычно представляют в виде матрицы наблюдений, где столбцы соответствуют различным признакам, а строки — либо разным объектам, либо последовательным во времени наблюдениям за одним и тем же объектом.
Из-за вариабельности
измеряемых признаков приходится считать
их значения случайными величинами и
пользоваться вероятностными (стохастическими)
постановками задач: матрица наблюдений
является выборкой, или выборочной
совокупностью случайных
Признаки, характеризующие объекты в медицине и здравоохранении, подразделяются на количественные, порядковые и качественные. Для количественных признаков можно указать точную характеристику — число (например, вес, рост, величина АД, данные анализов), Для порядковых признаков (ранговых, если каждой градации ставится в соответствие число — ранг) точная характеристика невозможна, но можно указать степень выраженности соответствующего свойства (хрипы в легких — единичные, множественные; интенсивность кашля — слабая, средняя, сильная, очень сильная). Качественные признаки не поддаются упорядочиванию или ранжированию (цвет глаз — голубой, серый, карий).
Обычно объекты
в биологии и медицине описываются
множеством признаков одновременно.
Набор учитываемых при
Закон распределения
случайной величины — это функция, определяющая
вероятность того, что какой-либо признак
примет заданное значение (если он дискретен)
или попадает в заданный интервал значений
(если он непрерывен). При большом числе
выборочных данных, значения которых варьируют
незначительно, закон распределения может
быть аппроксимирован гистограммой. Для
построения гистограммы интервал значений
признака разбивается на равные участки,
для которых подсчитывается частота попадания
случайной величины. При бесконечном увеличении
числа наблюдений и участков частота стремится
к вероятности, а вид гистограммы приближается
к кривой, выражающей функцию плотности
(или плотности вероятности) случайной
величины.
Законы распределения могут быть одномерными и многомерными. В последнем случае закон описывает вероятность появления сочетанных значений признаков или попадания их в некоторую область пространства признаков. В прикладной статистике особую роль играют несколько наиболее часто используемых законов распределения. Наиболее разработана гипотеза о нормальном распределении (закон Гаусса), функция плотности вероятности f (x) для которого имеет вид:
где М — математическое ожидание,
s — среднеквадратическое (стандартное) отклонение,
е — основание натуральных логарифмов (e = 2.718...).
Параметры закона Гаусса М и s приближенно оцениваются по любой выборке из генеральной совокупности:
где N — объем выборки, х — значение исследуемого количественного признака для 1-го измерения.
Величина о, возведенная в квадрат, называется дисперсией: D = s2 Дисперсия характеризует разброс (вариабельность) случайной величины около среднего значения. При нормальном распределении случайной величины ее наблюдаемые значения с большой вероятностью (равной 0,9972) отклоняются от М в ту или другую сторону не более чем на 3s (правило трех сигм).
Оценка математического ожидания М по выборке (называемая выборочным средним) тоже является случайной величиной. Она описывается так называемым распределением Стьюдента. Это распределение зависит от числа наблюдений (числа степеней свободы) и приводится в справочниках по прикладной статистике. Критерий Стьюдента (t-критерий) используется для оценки и сравнения средних значений нормально распределенных случайных величин. Имеется обобщение закона и критерия Стьюдента на многомерный случай.
Выборочная дисперсия также является случайной величиной, распределение которой получило название распределения c2 (хи-квадрат) Пирсона (по имени одного из основоположников биометрии). Таблицы значений c2 включены во все пособия по статистике. На основании распределения c2 строятся доверительные интервалы случайных величин.
Для сравнения выборочных дисперсий двух серий наблюдений используют распределение Фишера, которое зависит от числа степеней свободы обеих выборок и также представлено в табличной форме. Критерий Фишера (F-критерий) применяется для сравнения выборочных дисперсий и формирования оценок в регрессионном, дисперсионном и дискриминантном анализе.
Перечисленные
типы распределений относятся к
непрерывным случайным
где М — значение математического ожидания и равное ему значение дисперсии, Pk — вероятность того, что случайная величина принимает значение, равное k (здесь k — любое целое число).
Для таких же
величин применяется закон
Статистическое оценивание применяют в медицинских исследованиях, когда получаемых данных недостаточно для установления вида функции распределения случайных величин. В этом случае предполагают, что реализуется один из законов распределения, а матрицу наблюдений используют для оценки параметров этого закона.