История возникновения теории вероятностей

Автор: Пользователь скрыл имя, 20 Марта 2012 в 09:39, реферат

Описание работы

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку.

Содержание

Введение
Основные понятия теории вероятностей
История возникновения Теории вероятностей.
Примеры
Сложные вероятности. Теоремы сложения .
Этапы развития теории вероятностей:
Роль мошенничества в истории теории вероятностей(Дэвид Бэллхауз)
Вывод

Работа содержит 1 файл

История возникновения теории вероятности.doc

— 183.50 Кб (Скачать)

3,14;2,84, т.е. во всех случаях оказывалось близким к 3. Впоследствии немецкий зоолог Август Бейсман и американский биолог Томас Хант Морган объяснили результаты опытов Менделя. Используем с той же целью урновую схему. Предположим, что два элементарных носителя наследственности— доминантный ген А и рецессивный ген а—отвечают в организме за некий признак. При этом данный признак задаётся парой генов АА, Аа, аА или аа, и особи с генами АА, Аа, аА имеют доминантный признак, а особи с генами аа —рецессивный. При скрещивании гороха АА с горохом аа гибрид получает от каждого родителя по 1 гену, поэтому все особи первого поколения имеют пару генов Аа или аА и у них обнаруживается доминантный признак: например, семена желтого цвета. От родителей с парами генов Аа или аА можно получить особь АА, Аа, аА или аа. Все эти сочетания одинаково возможны, значит, особь аа с рецессивным признаком проявляется с вероятностью 1/4, а особь АА, Аа или аА с доминантным признаком—с вероятностью 3/4.

Механизм наследования так же случаен, как и исход бросания монеты или игральной кости. Поэтому можно сказать, что природа иногда “ играет в кости”.

Примеры:

Пример 1. В урне находятся три синих, восемь красных и десять белых шаров одинакового размера и веса, неразличимых наощупь. Шары тщательно перемешаны. Какова вероятность появления синего, красного и белого шаров при одном вынимании шара из урны?

Решение. Так как появление любого шара можно считать равновозможным, то мы имеем всего n=3+8+9=20 элементарных событий. Если через А, В, С обозначить события, состоящие в появлений соответственно синего, красного и белого шаров, а через m1,m2,m3— число благоприятствующих этим событиям случаев, то ясно, что m1=3,m2=8,m3=9. Поэтому

P(A)=3/20=0,15; P(B)=8/20=0,40; P(C)=9/20=0,45.

Пример 2. Одновременно брошены две монеты. Какова вероятность появления m гербов (m = 0, 1,2)?

Решение. Рассмотрим возможные при бросании двух монет исходы. Очевидно, их можно описать схемой

ГГ, ГР, РГ, РР,

где Г означает выпадение герба, а Р — надписи. Таким образом, возможны четыре элементарных события. Поскольку монеты предполагаются однородными и имеющими геометрически правильную форму, то нет никаких оснований предполагать, что одна из сторон какой-либо монеты выпадает чаще других. Поэтому все четыре случая следует считать равновозможными. Но тогда, обозначив через Pm вероятность выпадения m гербов, легко получим:

P0=1/4; P1=2/4=1/2; P2=1/4.

Пример 3. В мешке лежат 33 жетона, помеченные буквами русского алфавита. Из него извлекают жетоны и записывают соответствующие буквы, причем вынутые жетоны обратно не возвращают. Какова вероятность того, что при этом получится слово “око”? слово “ар”?

Решение. Ошибочно было бы решать задачу так: вероятность извлечения любой буквы равна 1/33, поэтому вероятность сложить слово “око” равна 1/33^3, а вероятность сложить слово “ар” равна 1/33^2. Это было бы верно, если бы последовательные извлечения жетонов из мешка были независимы друг от друга. Но так как жетоны обратно в мешок не возвращаются, то, вынув в первый раз букву “о”, мы уже не получим ее при третьем извлечении. Поэтому вероятность получить слово “око” равна нулю. Чтобы найти вероятность получения слова “ар”, заметим, что при двух извлечениях букв получаются всевозможные размещения без повторений из 33 букв по две, причем очевидно, что любые два таких размещения равновероятны. Так как общее число этих размещений равно (А33)2 =33 . 32=1056 , то вероятность сложить слово “ар” равна 1/1056.

Этот пример показывает, что при решении многих задач теории вероятностей оказываются полезными формулы комбинаторики — при определенных условиях у нас с равной вероятностью получаются размещения с повторениями (если, например, жетоны извлекаются и потом возвращаются обратно), размещения без повторений (если жетоны не возвращаются обратно), перестановки с повторениями и без повторений, сочетания и т. д. Долгое время комбинаторику вообще рассматривали как вспомогательную дисциплину для теории вероятностей, но теперь она приобрела самостоятельное значение.

Сложные вероятности. Теоремы сложения .

Непосредственный подсчёт случаев, благоприятствующих данному событию, может оказаться затруднительным. Поэтому для определения вероятности события бывает выгодно представить данное событие в виде комбинации некоторых других, более простых событий. Приведём теоремы, с помощью которых можно по вероятностям одних случайных событий вычислять вероятности других случайных событий, каким – либо образом связанных с первыми. Начнём с теорем, которые образуют группу с общим названием “теоремы сложения”.

Теорема 1. Пусть А и В – два несовместных события. Тогда вероятность того, что осуществится хотя бы одно из этих двух событий, равна сумме их вероятностей: P(A U B)=P(A)+P(B).

Доказательство.

Обозначим исходы, благоприятные для события А, через а1,а2,…,аm , а для события В – через b1,b2,…,bn. Вероятности этих исходов обозначим соответственно через p1,p2,…,pm и q1,q2,…,qn . Тогда событию A U B благоприятны все исходы a1,a2,…,am , b1,b2,…,bn . В силу того что события А и В несовместны, среди этих исходов нет повторяющихся. Поэтому вероятность события АUB равна сумме вероятностей этих исходов. т.е.

P(AUB)=p1+p2+…+pm+q1+q2+…+qn.

Но p1+p2+pm=P(A), q1+q2+qn=P(B), а потому

P(AUB)=P(A)+P(B).

Теорема доказана.

Пример 1. Стрелок стреляет в мишень. Вероятность выбить 10 очков равна 0,3 , а вероятность выбить 9 очков равна 0,6. Чему равна вероятность выбить не менее 9 очков?

Решение. Событие А “выбить не менее 9 очков” является объединением событий В - “выбить 10 очков” и С – “выбить 9 очков”. При этом события В и С несовместны, так как нельзя одним выстрелом выбить сразу и 9, и 10 очков.

Поэтому по теореме 1 имеем:

P(A)=P(B)+P(C)=0,3+0,6=0.9.

Если события А1, А2, … ,Аn попарно несовместны, то событие A1U … UAn-1 несовместно с событием An . В самом деле,

An) .An)U…U(An-1 (A1U…UAn-1) I An =(A1

Но при s<n имеем ,An =As  и потому (A1U…U.An =An-1) Пользуясь этим замечанием, получаем из теоремы 1 следствие:

Следствие. Если события А1,…, Аn попарно несовместны, то вероятность объединения этих событий равна сумме их вероятностей:

P(A1U…UAn)=P(A1)+…+P(An).

Доказательство. Как было отмечено выше, события A1U … UAn-1 и An несовместны, а потому по теореме 1имеем:

P(A1U…UAn-1UAn)=P(A1U…UAn-1)+P(An).

Применяя это же рассуждение к первому слагаемому и продолжая далее, получаем после n-1 шага, что

P(A1U … UAn)=P(A1)+…+P(An).

Пример 2. В цехе работает несколько станков. Вероятность того, что за смену потребует наладки ровно один станок, равна 0,2. Вероятность того, что за смену потребуют наладки ровно два станка, равна 0,13. Вероятность того, что за смену потребуют наладки больше двух станков, равна 0,07. Какова вероятность того, что за смену придётся проводить наладку станков?

Решение. В том примере опыт состоит в том, что прошла смена и отмечено, сколько станков за эту смену потребовало наладки. В этом опыте события: А – “за смену потребовал наладки ровно один станок”, В – “за смену потребовали наладки ровно два станка” и С – “ за сену потребовали наладки более двух станков” несовместны. Нас же интересует вероятность события AUBUC. По теореме 1: P(AUBUC)=P(A)+P(B)+P(C)=0,2+0,13+0,07=0,4.

Выведем теперь связь между вероятностями противоположных событий.

Теорема 2. Для любого события А имеем: P(A*)=1-P(A).

Для доказательства вспомним, что AUA*=U, P(U)=1 и A A*. Тогда по теореме 1 получаем: 1=P(U)=P(AUA*)=P(A)+P(A*), откуда следует требуемая формула.

Пример 3. Берётся наудачу трёхзначное натуральное число от 100 до 999. Какова вероятность того, что хотя бы две его цифры совпадают?

Решение. Опыт здесь состоит в том, что наудачу выбирается натуральное число от 100 до 999 и смотрят, есть ли у него совпадающие цифры. События “взяли наудачу число N” (N= 100, 101, … , 999) равновероятны (в этом смысл слова “наудачу” ) и образуют множество исходов этого опыта. Число исходов n=900. Нас интересует событие А - “у выбранного числа совпадают хотя бы две цифры”. Проще, однако, подсчитать вероятность противоположного события А* - “у выбранного числа все цифры различны”. Каждое такое число есть размещение без повторений из 10 цифр по 3, не имеющее первым элементом нуль. Следовательно, m=(A10)3 –(A9)2=10.9.8—9.8=92.8 (из числа всех трёхэлементных размещений без повторений надо вычесть число тех, у которых на первом месте стоит нуль) и P(A*)=92.8/900=0,72. Тогда по

теореме 2 P(A)=1-P(A*)=0,28.

Пример 4. В урне, содержащей n шаров белого, красного и чёрного цвета, находится k белых шаров и L красных. Какова вероятность вынуть шар не чёрного цвета?

Решение. Если событие А состоит в появлении белого, а событие В – красного шара, то появление шара не чёрного цвета означает появление либо белого, либо красного шара. Так как по определению вероятности

P(A)=k/n, P(B)=L/n,

То по теореме сложения вероятность появления шара не чёрного цвета равна: P(A U B)=k/(n+L)/n=(k+L)/n.

Эту задачу можно решить и так. Пусть событие С состоит в появлении чёрного шара. Число чёрных шаров равно n –(k+L), так что P(C)=(n—k—L)/n. 3

Появление шара не чёрного цвета является противоположным событием С*, поэтому на основании указанного выше следствия из теоремы сложения имеем: P(C*)=1—P(C )=1—(n—k—L)/n=(k+L)/n, как и раньше.

Пример 5. В денежно – вещевой лотерее на серию в 1000 билетов приходится 120 денежных и 80 вещевых выигрышей. Какова вероятность какого – либо выигрыша на один лотерейный билет?

Решение. Если обозначить через А событие, состоящее в выпадении денежного выигрыша, и через В — вещевого, то из определения вероятности следует P(A)=120/1000=0,12; P(B)=80/1000=0,08. Интересующее нас событие представляет (AUB), поэтому из теоремы сложения вытекает:

P(AUB)=P(A)+P(B)=0,20.

Таким образом, вероятность какого – либо выигрыша равна 0,2.

Прежде чем перейти к следующей теореме, необходимо ознакомиться с новым важным понятием – понятием условной вероятности. Для этой цели мы начнём с рассмотрения следующего примера.

Пусть на складе имеется 400 электрических лампочек, изготовленных на двух различных заводах, причём на первом изготовлено 75% всех лампочек, а на втором – 25%. Допустим, что среди лампочек, изготовленных первым заводом, 83% удовлетворяют условиям определённого стандарта, а для продукции второго завода этот процент равен 63. Определим вероятность того, что случайно взятая со склада лампочка окажется удовлетворяющей условиям стандарта.

Заметим, что общее число имеющихся стандартных лампочек состоит из

400 . 0,75 . 0,83=249 лампочек, изготовленных первым заводом, и 63 лампочек, изготовленных вторым заводом, т.е. равно 312. Так как выбор любой лампочки следует считать равновозможным, то мы имеем 312 благоприятствующих случаев из 400, так что P(B)=312/400=0.78, где событие В состоит в том, что выбранная нами лампочка стандартна.

Пир этом подсчёте не делалось никаких предположений о том, к продукции какого завода принадлежит выбранная нами лампочка. Если же какие – либо предположения такого рода сделать, то очевидно, что интересующая нас вероятность может измениться. Так, например, если известно, что выбранная лампочка изготовлена на первом заводе (событие А), то вероятность того, что она стандартна, будет уже не 0.78, а 0.83.

Такого рода вероятность, т.е. вероятность события В при условии, что имеет событие А, называют условной вероятностью события В при условии наступления события А и обозначают РА (В).

Если мы в предыдущем примере обозначали через А событие, состоящее в том, что выбранная лампочка изготовлена на первом заводе, то мы можем написать РА (В)=0,83.

Этапы развития теории вероятностей:

1)Предыстория теории вероятностей. В этот период, начало которого теряется в глубине веков, ставились и примитивно решались задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов решения в этот период не было. Этот период закончился в XVI веке появление работ Кардано, Пачоли, Тарталья.

2)Возникновение теории вероятностей как науки. В этот период вырабатываются первые специфические понятия, устанавливаются первые теоремы. Начало этого периода связано с именами Паскаля, Ферма, Гюйгенса. Этот период продолжается от середины XVI века до начала XVIII века. В этот период теория вероятностей находят свои первые применения в демографии, страховом деле, оценке ошибок наблюдения.

3)Следующий этап начинается с появления работы Я. Бернулли «Искусство предположения» (1713 год). Здесь была доказана теорема Бернулли, которая дала возможность широко применять теорию вероятностей к статистике. К этому периоду относятся работы Муавра, Лапласа, Гаусса, Пуассона, теория вероятностей начинает применяться в различных областях естествознания.

4)Следующий этап развития теории вероятностей связан, прежде всего, с русской (Петербургской) школой. Здесь можно назвать имена Чебышева, Маркова, Ляпунова. В это время теория вероятностей начинает широко применяться в различных областях естествознания, в первую очередь – в физике. Возникает статистическая физика, которая развивается в тесной связи с теорией вероятностей.

5)Современный этап развития теории вероятностей. Для успешного применения теории вероятностей к физике, биологии и другим наукам, а также к технике и военному делу необходимо было уточнить и привести в стройную систему основные понятия теории вероятностей. Поэтому этот период начался с установления аксиом науки. Первые работы этого периода связаны с именами Бернштейна, Мизеса, Бореля. Окончательное установление аксиоматики произошло в 30-е годы XX века, когда была опубликована и получила всеобщее признание аксиоматика Андрея Николаевича Колмогорова.

Сейчас невозможно указать ни одной области человеческой деятельности, где бы не применялись вероятностные исследования. Говорят о «стохастической революции в сознании». В современном языке стохастический означает «случайный», в древнегреческом stochastikos означало «умеющий угадывать».

Информация о работе История возникновения теории вероятностей