История возникновения теории вероятностей

Автор: Пользователь скрыл имя, 20 Марта 2012 в 09:39, реферат

Описание работы

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку.

Содержание

Введение
Основные понятия теории вероятностей
История возникновения Теории вероятностей.
Примеры
Сложные вероятности. Теоремы сложения .
Этапы развития теории вероятностей:
Роль мошенничества в истории теории вероятностей(Дэвид Бэллхауз)
Вывод

Работа содержит 1 файл

История возникновения теории вероятности.doc

— 183.50 Кб (Скачать)


Министерство по образованию Российской Федерации

Дальневосточный Федеральный Университет

Институт международного туризма и гостеприимства

 

 

 

 

 

Реферат по математике на тему:

«История возникновения теории вероятностей»

 

 

 

Выполнила: студентка группы 1523А

Ким Елена

Проверила: Миколайчук Татьяна Леонидовна

 

 

 

Владивосток 2010

Содержание:

Введение

Основные понятия теории вероятностей

История возникновения Теории вероятностей.

Примеры

Сложные вероятности. Теоремы сложения .

Этапы развития теории вероятностей:

Роль мошенничества в истории теории вероятностей(Дэвид Бэллхауз)

Вывод

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей[1]. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год)[2].

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Основные понятия теории вероятностей

1)Вероятность (вероятностная мера) — численная мера степени объективной возможности наступления случайного события. Оценкой вероятности события может служить частота его наступления в длительной серии независимых повторений случайного эксперимента. Согласно определению П. Лапласа мерой вероятности называется дробь, числитель которой есть число всех благоприятных случаев, а знаменатель — число всех равновозможных случаев.

2)Вероятностное пространство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплины.

3)Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причем появление того или иного значения этой величины до её измерения нельзя точно предсказать.

Формальное математическое определение следующее: пусть — вероятностное пространство, тогда случайной величиной называется функция , измеримая относительно и борелевской σ-алгебры на . Вероятностное поведение случайной величины полностью описывается её распределением.

4)Теорема Муавра — Лапласа - одна из предельных теорем теории вероятностей, установлена Лапласом в 1812. Если при каждом из n независимых испытаний вероятность появления некоторого случайного события Е равна р (0<р<1) и m - число испытаний, в которых Е фактически наступает, то вероятность неравенства близка (при больших n) к значению интеграла Лапласа.

5)Кумулятивная функция распределения (или просто функция распределения) в теории вероятностей однозначно задаёт распределение случайной величины или случайного вектора.

6)Математическое ожидание — мера среднего значения случайной величины в теории вероятностей. В зарубежной литературе обозначается через (например, от англ. Expected value или нем. Erwartungswert), в русской M[X] (возможно, от англ. Mean value, а возможно от русск. Математическое ожидание). В статистике часто используют обозначение μ.

7)Дисперсия случайной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается D[X] в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или . Квадратный корень из дисперсии, равный , называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Из неравенства Чебышёва следует, что случайная величина удаляется от её математического ожидания на более чем k стандартных отклонений с вероятностью менее 1/k². Так, например, как минимум в 75% случаев случайная величина удалена от её среднего не более чем на два стандартных отклонения, а в примерно 89% — не более чем на три.

8)В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют независимыми, если значение одной из них не влияет на вероятность значений другой.

9)Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.

10)Закон больших чисел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.

Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.

Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

11)Центральные предельные теоремы (Ц.П.Т.) — класс теорем в теории вероятностей, утверждающих, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Так как многие случайные величины в приложениях являются суммами нескольких случайных факторов, центральные предельные теоремы обосновывают популярность нормального распределения.

История возникновения Теории вероятностей.

Случай, случайность — с ними мы встречаемся повседневно: случайная встреча, случайная поломка, случайная находки, случайная ошибка. Этот ряд можно продолжать бесконечно. Казалось бы, тут нет места математики—какие уж законы в царстве Случая! Но и здесь наука обнаружила интересные закономерности—они позволяют человеку уверенно чувствовать себя при встреча со случайными событиями.

Как наука теория вероятности зародилась в 17в. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Слово “азарт”, под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard, буквально означающего “случай”, “риск”. Азартными называют те игры, а которых выигрыш зависит главным образом не от умения игрока, а от случайности. Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных—алгебраиста Джероламо Кардана (1501- 1576) и Галилео Галилея (1564—1642). Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым—Блезу Паскалю (1623—1662) и Пьеру Ферма. Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность. Всё началось с игры в кости.

Азартные игры практиковались в ту пору главным образом среди знати, феодалов и дворян. Особенно распространенной была игра в кости. Было замечено. что при многократном бросании однородного кубика, все шесть граней которой отмечены соответственно числами 1, 2, 3, 4, 5, 6 число очков от 1 до 6 выпадают в среднем одинаково часто, иными словами, выражаясь языком математики, выпадение определённого числа очков имеет вероятность, равную 1/6 (т.е. отношению числа случаев, благоприятствующих событию к общему числу всех случаев'). Аналогично вероятность появления на верхней грани кости чётного числи очков равна 3/6 ,так как из шести равновозможных случаев чётное число появляется только в трёх.

Один из представителей французской знати того времени, страстный игрок де Мере написал одному из крупнейших учёных тоги времени Блезу Паскалю письмо, в котором просил ответить на ряд вопросов, возникших у него в связи с игрой к кости.

Задача кавалера де Мере. Кавалер де Мере, один из французских придворных, был азартным игроком. Денежный выигрыш при игре в косит обычно зависит от комбинации выпивших чисел, на которую делается ставки. Одна из таких комбинаций—выпадение хотя бы одной шестёрки при четырёх бросаниях игральной кости. Де мере смог подсчитать число шансов этой комбинации. Общее число исходов при четырёх бросаниях игральной кости равно 64=1296. Число шансов появления хотя бы одной шестерки составляет 6-5 =671 , так как шестёрки не выпадает ни разу в 5 случаях. Следовательно, вероятность выпадения хотя бы одной шестёрки при четырёх бросаниях равна 671/1296~0,518> 1/2, поэтому при четырёх бросаниях выгодно делать ставку на то, что выпадет хотя бы одни шестёрка. чем на то, что не выпадет ни одной. Повидимому, многие опытные игроки знали, что первая комбинация появляется чаще, чем вторая, и найти партнёра ни такую игру было трудно. Более сложные комбинации возникали, если бросали сразу две кости. Де Мере пытался определить, сколько раз надо бросить пару костей, чтобы вероятность хотя бы одного появления двух шестёрок была больше 1/2. Он подсчитал, что достаточно 24 бросаний. Однако опыт игрока заставил де Мере сомневаться в правильности своих вычислений. Тогда он обратился с этой задачей к математику Блезу Паскалю, который предложил правильное решение. Учёный определил, что при 24 бросаниях пары костей две шестёрки появляются хотя бы раз с вероятностью, меньшей 1/2, а при 25 бросаниях—с вероятностью, большей 1/2.В самом деле, если бросить один раз пару костей, две шестёрки выпадут с вероятностью 1/36, а не выпадут—с вероятностью 1-1/36=35/36. При n бросаниях пары костей число шансов непоявления пары шестерок равно 35, а общее число исходов составит 35.Поэтому игрок, делающий ставку на событие А выигрывает примерно а 50,5% игр, а игрок, делающий ставку на событие А —примерно в 49,1% игр. Эта задача кавалера де Мере заставила Паскаля заняться изучением случайных событий. А в переписке Блеза Паскаля и Пьера Ферма впервые стали упоминаться понятия теории вероятностей. Подсчёт всех возможных и благоприятствующих данному событию случаев нередко представляет большие трудности. Вот почему для решения таких задач некоторые игроки обращались к крупным учёным. Рассказывают, что Гюйгенсу был задан такой вопрос: “Если бросить одновременно три игральных кости, то какая сумма очков будет выпадать чаще—11 или 12?” Подсчёт всех различных случаев здесь прост: N=6 =216. Подсчёт же М здесь сложен. Сумма 11 может получиться следующими шестью различными способами: 1+4+6, 1+5+5, 2+3+6, 2+4+5, 3+3+5. 3+4+4. Также шестью различными способами образуется сумма 12: 1+5+6, 2+4+6, 2+5+5, 3+3+6, 3+4+5, 4+4+4. Это обстоятельство наводит на мысль, будто обе суммы должны появляться одинаково часто. Однако это неверно. Уже на практике было замечено, что сумма 11 появляется чаще суммы 12. Дело а том, что вышеуказанные по три числа сами по себе неодинаково часто выпадают. Так, если каждую из трех костей окрасить по-разному, скажем в белый, красный и зелёный цвет, то становится ясным, что сочетание, а котором имеются три различных слагаемых, например (1+4+6), может получаться шестью различными способами:

1 бел. + 4 красн. + 6 зел.; 2) 1 бел. + б красн. + 4 зел.:

4 бел. + 1 красн. + 6 зел.; 4) 4 бел. + 6 красн. + 1 зел.;

5) 6 бел. + 1 красн. + 4 зел.; 6) б бел. + 4 красн. + 1 зел. Аналогично сочетание с двумя одинаковыми слагаемыми, например (2+5+5), может получиться тремя различными способами, в то время как сочетания с одинаковыми слагаемыми, вроде (4+4+4), получается единственным способом. И вот для 11 очков мы получим, таким образом, не шесть различных способов, а

1*6 + 1*3 + 1*6 + 1*6 + 1*3 + 1*3 = 27.

Для суммы же 12 число различных способов будет:

1*6 + 1*6 + 1*3 + 1*3 + 1*6+ 1 = 25.

Решение порой довольно сложных задач, с которыми обращались заинтересованные лица к Паскалю, Ферма, Гюйгенсу, способствовало разработке основных понятий и общих принципов теории вероятностей, в том числе и правил действия над ними. Отсюда не следует, конечно, заключать, что основоположники теории вероятностей рассматривали азартные игры как единственный или главный предмет разрабатывавшейся ими новой отрасли науки. На развитие теории вероятностей оказали влияние более серьёзные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах ещё в 16в. В 16-17вв. учреждение страховых обществ и страхование судов от пожара распространились во многих европейских странах. Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности. Об этом заметил ещё Гюйгенс в своей книге “О расчётах в азартной игре” (1657), которая была первой книгой в мире по теории вероятностей. Он писал: “...при - внимательном изучении предмета читатель заметит, что он занимается не только игрой, а что здесь даются основы глубокой и весьма интересной”. Гюйгенс впервые ввёл важное для теории вероятностей понятие математического ожидания, которое получило дальнейшее развитие а трудах Даниила Бернулли, Даламбера и др. Понятие математического ожидания находит немало применений а разных других областях человеческой деятельности.

Таким образом, в 60-е годы 17в. были выработаны первые понятия и некоторые элементы теории вероятностей. В последующие два века учёные столкнулись с множеством новых задач, связанных с исследованием случайных явлений. Играет ли природа в кости?

В середине 19в. преподаватель Высшей реальной школы, в городе Брюнне Грегор Иоганн Мендель производил свои ставшие впоследствии знаменитыми опыты с горохом, в результате которых были открыты законы наследственности. Мендель скрестил два сорта гороха с жёлтыми и зелёными семенами, после чего растения дали только желтые семена (первое поколение гибридов). После самоопыления растений, выраженных из этих семян (второе поколение гибридов), появился горох и с жёлтыми, и с зелёными семенами Мендель подсчитал, что отношение числа растений с жёлтыми семенами к числу растений с зелеными семенами равно 3,01. Учёный скрещивал также сорта гороха, различающиеся либо по форме плода, либо по расположению цветков, либо по размерам растении и т.п. И каждый раз в первом поколении обнаруживался только один из противоположных родительских признаков—его Мендель назвал доминантным (от лат. dominatus—"господство"), лишь во втором поколении проявлялся и другой—регрессивный (от. лат. recessus— “отступление”), В опытах Менделя отношение числа растений с доминантным признаком к числу растений с рецессивным признаком было равно 3,15; 2,95; 2,82;

Информация о работе История возникновения теории вероятностей