Геометрия на сфере

Автор: Пользователь скрыл имя, 02 Апреля 2012 в 21:36, курсовая работа

Описание работы

По аналогии с плоскостью в пространстве Евклида имеется только два типа поверхностей, которые могут без деформации передвигаться сами по себе, так, чтобы каждая точка поверхности совмещалась с любой другой ее точкой и притом, чтобы направление любой касательной к поверхности в первой точке совместилось с направлением любой касательной во второй точке. Такими поверхностями являются плоскости и сферы.

Содержание

Введение………………………………………………………………………….3

Глава 1. Общие понятия сферической геометрии……………………………..4

Глава 2. Эллиптическая геометрия как геометрия сферы с отождествленными точками.

2.1. Эллиптическое n-пространство……………………………………………8

2.2. Расстояния…………………………………………………………………..10

2.3. Тригонометрия и площадь треугольника…………………………………11

2.4. Координаты…………………………………………………………………12

2.5. Объемы………………………………………………………………………14

Глава 3. Понятие об эллиптической геометрии Римана……………………. 15

Глава 4. Элементы геометрии на небесной сфере…………………………….18

Заключение………………………………………………………………………24

Список литературы……………………………………………………………...25

Приложение……………………………………………………………………...26

Работа содержит 1 файл

prorobot.ru-11-0024.doc

— 341.00 Кб (Скачать)

        Итак, точки пересечения небесной сферы с отвесной линией, проходящей через ее центр, называются: верхняя - зенит и нижняя - надир. Большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии, называется математическим горизонтом (или просто горизонтом). Любая плоскость, проходящая через зенит и центр сферы, образует при пересечении с ней большой круг, именуемый вертикалом.

        Суточное вращение Земли вокруг своей оси естественным образом выделяет направление оси мира, вокруг которой вращается небесная сфера. Точки пересечения оси мира с небесной сферой называются полюсами мира. Тот полюс, относительно которого вращение небесной сферы происходит против часовой стрелки (для наблюдателя, находящегося в центре небесной сферы), называется северным полюсом мира, противоположный - южным полюсом мира.

      Направление на полюс мира из места наблюдения и из центр Земли параллельны вследствие того, что размеры Земли ничтожны по сравнению с расстояниями до звезд. Поэтому в любом пункте Земли высота полюса над горизонтом hp равна широте места φ.

      Большой круг небесной сферы, плоскость которого перпендикулярна к оси мира, называется небесным экватором. Небесный экватор делит поверхность небесной сферы на два полушария: северное (с северным полюсом мира) и южное (с южным полюсом мира). Он пересекается с горизонтом в двух точках: в точке востока и в точке запада. Вертикал, проходящий через эти точки, называется первым вертикалом.

      Малый круг небесной сферы, плоскость которого параллельна плоскости небесного экватора, называется небесной или суточной параллелью светила. По суточным параллелям совершаются видимые суточные движения светил.

       Большой круг небесной сферы, плоскость которого проходит через полюсы мира и через зенит наблюдателя, называется небесным меридианом. Небесный меридиан делит поверхность небесной сферы на два полушария: восточное, с точкой востока, и западное, с точкой запада. Плоскость небесного меридиана пересекается с плоскостью математического горизонта по прямой линии, которая называется полуденной линией. Она пересекается с горизонтом в двух точках: в точке севера и в точке юга. Точкой севера называется та, которая ближе к северному полюсу мира, точка юга ближе к южному полюсу мира.

      Большой круг небесной сферы, проходящий через полюсы мира и через светило М, называется часовым кругом или кругом склонения светила.
     Покончив со строгими формулировками, заметим, что запомнить все сказанное здесь не так уж трудно. Местонахождение точки зенита определяется сразу: эта точка находится у каждого из нас над головой. Точка северного полюса на начало 1986 года находилась на расстоянии 47,6' от звезды α Малой Медведицы и в настоящее время приближается к ней со скоростью 17" в год. Констатировав это, нетрудно уже мысленно провести основные плоскости и круги на небесной сфере.

      К сказанному выше нам осталось напомнить, что видимое годичное движение Солнца происходит по большому кругу небесной сферы, который называется эклиптикой. Плоскость эклиптики наклонена к плоскости небесного экватора под углом s, который для середины 1986 года равен 23o26'27,8". Точки пересечения эклиптики с небесным экватором называются точками весеннего и осеннего равноденствий. Через точку весеннего равноденствия Солнце переходит из южного полушария небесной сферы в северное около 21 марта. Точки эклиптики, отстоящие на 90o от равноденственных, называются точками солнцестояний.

      Перпендикуляр к плоскости эклиптики, проходящий через центр небесной сферы, называется осью эклиптики, а точки его пересечения с небесной сферой - полюсами эклиптики.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение.

   

     В данной курсовой работе мы познакомились со сферической геометрией, которая изучает геометрические образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрические образы, находящиеся на плоскости.

     Геометрия сферы является эллиптической геометрией с отождествленными точками.

     Эллиптическим пространством называется неевклидово пространство Римана.

     Элементы геометрии также присутствуют и на небесной сфере.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список литературы.

 

1.      Энциклопедия элементарной математики, книга IV, V. Геометрия. – М.: Наука, 1966. – 624 с.

2.      Розенфельд Б.А. Неевклидовы пространства. – М.: Наука. Главная редакция физико – математической литературы, 1969. – 548 с.

3.      Трайнин Я.Л. Основания геометрии. Пособие для пед. институтов. – М. 1961. – 334 с.

4.      Стройк Д.Я. Краткий очерк истории математики. – М.: Наука, 1984.- 288 с.

5.      Альбицкий В.А. Курс астрофизики и звездной астрономии. Том 1. – М.: Государственное издательство технико – теоретической литературы, 1951. – 591 с.

6.      Атаносян Л.С. Геометрия. Часть 2. – М.: Просвещение, 1974.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Приложение.

                     Задачи.

1.Изобразить на чертеже небесную сферу в проекции на плоскость горизонта.

Решение: Как известно, проекцией какой-либо точки А на какую-либо плоскость является точка пересечения плоскости и перпендикуляра, опущенного из точки А к плоскости. Проекцией отрезка, перпендикулярного к плоскости, является точка. Проекцией круга, параллельного плоскости, является такой же круг на плоскости, проекцией круга, перпендикулярного к плоскости, является отрезок, а проекцией круга, наклоненного к плоскости, является эллипс, тем более сплюснутый, чем ближе угол наклона к 90o. Таким образом, для того, чтобы начертить проекцию небесной сферы на какую-либо плоскость, надо опустить на эту плоскость перпендикуляры из всех точек небесной сферы. Последовательность действий следующая. Прежде всего, необходимо начертить круг, лежащий в плоскости проекции, в данном случае это будет горизонт. Затем нанести все точки и линии, лежащие в плоскости горизонта. В данном случае это будет центр небесной сферы C, и точки юга S, севера N, востока E и запада W, а также полуденная линия NS. Далее опускаем перпендикуляры на плоскость горизонта из остальных точек небесной сферы и получаем, что проекцией зенита Z, надира Z' и отвесной линии ZZ' на плоскость горизонта является точка, совпадающая с центром небесной сферы C. Проекцией первого вертикала является отрезок EW, проекция небесного меридиана совпадает с полуденной линией NS. Точки, лежащие на небесном меридиане: полюса P и P', а также верхняя и нижняя точки экватора Q и Q' проецируются поэтому на полуденную линию тоже. Экватор является большим кругом небесной сферы, наклоненным к плоскости горизонта, поэтому его проекция - это эллипс, проходящий через точки востока E, запада W, и проекции точек Q и Q'.

 

 

Проекция небесной сферы на плоскость горизонта.

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Изобразить на чертеже небесную сферу в проекции на плоскость небесного меридиана.

Решение:

Проекция небесной сферы на плоскость небесного меридиана.


 

 



Информация о работе Геометрия на сфере