Автор: Lida Lysenko, 10 Сентября 2010 в 22:54, курсовая работа
При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n — ее порядком.
Глава I. Алгебра матриц……………………………………………………………....3
1. Понятие матрицы…………………………………………………………..3
2. Виды матриц………………………………………………………………..3
3. Основные операции над матрицами и их свойства……………………....5
3.1. Сложение матриц……………………………………………………....5
3.2. Умножение матрицы на число………………………………………...5
3.3. Произведение матриц………………………………………………….6
4. Вырожденные и невырожденные матрицы………………………………8
5. Обратная матрица…………………………………………………………..8
6. Понятие и основные свойства определителя…………………………….10
7. Транспонирование…………………………………………………………11
Глава II. Реализация матричных операций в Mathcad……………………………..12
Заключение…………………………………………………………………………....17
Литература…………………………………………………………………………….18
Содержание:
Глава
I. Алгебра матриц…………………………………………………………….
1.
Понятие матрицы………………………………………………………….
2.
Виды матриц…………………………………………………
3.
Основные операции над
3.1. Сложение матриц………………………………………
3.2. Умножение матрицы на число…………
3.3. Произведение матриц……………………………
4. Вырожденные и невырожденные матрицы………………………………8
5. Обратная матрица……………………………………
6. Понятие и основные свойства определителя…………………………….10
7.
Транспонирование……………………………………
Глава II. Реализация матричных операций в Mathcad……………………………..12
Заключение……………………………………………………
Литература……………………………………………………
1. Понятие матрицы.
При
решении различных задач
Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n — ее порядком.
В дальнейшем для записи матриц будут применяться либо сдвоенные черточки, либо круглые скобки:
или
Для краткого обозначения матрицы часто будет использоваться либо одна большая латинская буква (например, A), либо символ || a ij || , а иногда с разъяснением: А = || a ij || = ( a ij ), где (i = 1, 2, ..., т, j=1, 2, ..., n).
Числа a ij , входящие в состав данной матрицы, называются ее элементами. В записи a ij первый индекс і означает номер строки, а второй индекс j — номер столбца.
2. Виды матриц
Квадратная матрица
Матрица называется квадратной порядка n, если число ее строк равно числу столбцов и равно n. В случае квадратной матрицы
(1.1)
вводятся понятия главной и побочной диагоналей. Главной диагональю матрицы (1.1) называется диагональ а11 а22 … ann идущая из левого верхнего угла этой матрицы в правый нижний ее угол. Побочной диагональю той же матрицы называется диагональ аn1 а(n-1)2 … a1n , идущая из левого нижнего угла в правый верхний угол.
Квадратная матрица, элементы которой удовлетворяют условию:
называется диагональной, т.е. диагональная матрица имеет вид:
Диагональная матрица порядка n называется единичной, если все элементы ее главной диагонали равны 1. Матрица любого размера называется нулевой или нуль матрицей, если все ее элементы равны нулю. Единичная матрица обозначается буквой Е, нулевая – О. Матрицы имеют вид:
Предположим, что некоторая
можно
рассматривать как блочную
элементами которой служат следующие блоки:
Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.
3. Основные операции над матрицами и их свойства
Прежде всего, договоримся считать две матрицы равными, если эти матрицы имеют одинаковые порядки и все их соответствующие элементы совпадают.
Перейдем
к определению основных операций над матрицами.
3.1. Сложение матриц
Суммой двух матриц A = || a ij || , где (i = 1, 2, ..., т, j=1, 2, ..., n) и В = || b ij || , где (i = 1, 2, ..., т, j=1, 2, ..., n) одних и тех же порядков т и п называется матрица С = || c ij || (і =1,2, ..., т; j = 1, 2, ...., п) тех же порядков т и п, элементы сij которой определяются по формуле
, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.2)
Для обозначения суммы двух матриц используется запись С = А + В. Операция составления суммы матриц называется их сложением. Итак, по определению:
+ =
Из определения суммы матриц, а точнее из формулы (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения вещественных чисел, а именно:
1) переместительным свойством: А + В = В + А,
2) сочетательным свойством: (A + B) + С = А + (В + С).
Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.
Замечание. Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A — В.
Очень
легко убедиться в том, что
разность С двух матриц А
и В может быть получена по правилу
С = A + (–1) В.
3.2. Умножение матрицы на число
Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j=1, 2, ..., n) на вещественное число l, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., n), элементы которой определяются по формуле:
, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.3)
Для обозначения произведения матрицы на число используется запись С = l A или С = А l. Операция составления произведения матрицы на число называется умножением матрицы на это число.
Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:
1)
сочетательным свойством
2)
распределительным свойством
3)
распределительным свойством
3.3. Произведение матриц
Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j = 1, 2, ..., n) имеющей порядки, соответственно равные т и n, на матрицу В = || b ij || , где (i = 1, 2, ..., n , j=1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., р), имеющая порядки, соответственно равные т и р элементы которой определяются по формуле:
где (i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)
Для обозначения произведения матрицы А на матрицу В используют запись С = А × В. Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.
Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.
Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент ci j стоящий на пересечении і-й строки и j-го столбца матрицы С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j-го столбца матрицы В.
В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.
Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матрицу В:
1) сочетательное свойство: ( А В ) С = А ( В С );
2)
распределительное
( A + B ) С = А С + В С или A ( В + С ) = A В + А С.
Вопрос о переместительном свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.
Приведем
важные частные случаи матриц, для
которых справедливо и
Среди
квадратных матриц выделим класс
так называемых диагональных матриц,
у каждой из которых элементы, расположенные
вне главной диагонали, равны
нулю. Каждая диагональная матрица
порядка п имеет вид
D
=
(1.5)
где d1 , d2 , …, dn—какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d1 = d2 = … = dn то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.