Методы прогнозирования

Автор: Пользователь скрыл имя, 20 Октября 2011 в 20:39, курсовая работа

Описание работы

Процесс прогнозирования достаточно актуален в настоящее время. Широка сфера его применения. Прогнозирование широко используется в экономике, а именно в управлении. В менеджменте понятие «планирование» и «прогнозирование» тесно переплетены. Они не идентичны и не подменяют друг друга. Планы и прогнозы различаются между собой временными границами, степенью детализации содержащихся в них показателей, степенью точности и вероятности их достижения, адресностью и, наконец, правовой основой. Прогнозы, как правило, носят индикативный характер, а планы обладают силой директивного характера. Не подмена и противопоставление плана и прогноза, а их правильное сочетание – таков путь планомерного регулирования экономики в условиях рыночной экономики и перехода к ней.

Содержание

Введение 3
Глава 1 4
1 Задачи и принципы прогнозирования 4
2 Методы научно-технического прогнозирования 7
2.1 Классификация методов прогнозирования 7
2.2 Экстраполяционные методы прогнозирования 10
2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции 11
2.3 Статистические методы 14
2.4 Экспертные методы 16
2.4.1 Область применения экспертных методов 16
2.4.2 Метод эвристического прогнозирования (МЭП) 19
3 Классификация экономических прогнозов 23
Глава 2 27
4 Методы скользящего среднего и экспоненциального сглаживания 27
Вывод 32
Список литературы 33

Работа содержит 1 файл

курсов.doc

— 161.50 Кб (Скачать)

    Таким образом, статистические методы используются в основном для подготовки данных, приведения их к виду, пригодному для производства прогноза. Как правило, после их применения используется один из методов экстраполяции или интерполяции для получения непосредственно прогнозного результата. 

2.4 Экспертные методы

2.4.1 Область применения  экспертных методов

    Методы  экспертных оценок в прогнозировании  и перспективном планировании научно-технического прогресса применяются в следующих случаях:

    а) в условиях отсутствия достаточно представительной и достоверной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное использование водных ресурсов на предприятиях);

    б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы  в космосе или учет взаимовлияния областей науки и техники);

    в) при средне- и долгосрочном прогнозировании  объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробиологическая промышленность, квантовая электроника, атомное машиностроение);

    г) в условиях дефицита времени или  экстремальных ситуациях.

    Экспертная  оценка необходима, когда нет надлежащей теоретической основы развития объекта. Степень достоверности экспертизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими событиями. Существует две категории экспертов - это узкие специалисты и специалисты широкого профиля, обеспечивающие формулирование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди определенной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих способностью к дерзанию и воображению.

Важно установить не абсолютную степень надежности экспертной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогнозной оценки и надежностью класса тех гипотез, которыми оперирует эксперт.

    В результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида — как случайные. Эксперт, склонный к ошибкам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Для коррекции систематических ошибок можно применять поправочные коэффициенты или же использовать специально разработанные тренировочные игры. Ошибки второго вида характеризуются величиной дисперсии. К сожалению определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.

    Организация форм работы эксперта может быть программированной или непрограммированной, а деятельность эксперта может осуществляться в устной (интервью) либо в письменной форме (ответ на вопросы специальных таблиц экспертных оценок или свободное изложение по заданной теме).

    Исходя  из полученной в результате анализа модели объекта прогнозирования, определяются научные и технические направления, по которым необходимо привлечь эксперта, выделяются группы экспертов по принадлежности вопроса к области фундаментальных, прикладных наук или к стыковым научным направлениям.

    При решении задачи формирования экспертной группы необходимо выявить и стабилизировать работоспособную сеть экспертов. Способ стабилизации экспертной сети заключается в следующем. На основе анализа литературы по прогнозируемой проблеме выбирается любой специалист, имеющий несколько публикаций в данной области. К нему обращаются с просьбой назвать 10 наиболее компетентных, по его мнению, специалистов по данной проблеме. Затем обращаются одновременно к каждому из десяти названных специалистов с просьбой указать 10 наиболее крупных их коллег-ученых. Из полученного списка специалистов вычеркиваются 10 первоначальных, а остальным рассылаются письма, содержащие указанную выше просьбу. Данную процедуру повторяют до тех пор, пока ни один из вновь названных специалистов не добавит новых фамилий к списку экспертов, т. е. пока не стабилизируется сеть экспертов. Полученную сеть экспертов можно считать генеральной совокупностью специалистов. Однако в силу ряда практических ограничений оказывается нецелесообразным привлекать всех специалистов к экспертизе. Поэтому необходимо сформировать репрезентативную выборку из генеральной совокупности экспертов.

    Определение специфики процедур для методов  класса ПЭО (персональных экспертных оценок) осуществляется на основе анализа требований к экспертам и их оценкам, вытекающим из сущности методов :

    а) аналитические записки предъявляют требования структуризации экспериментируемой проблемы, экспликации и ранжирования целей, анализа альтернативных путей достижения цели, оценки затрат на каждую альтернативу и рекомендаций по наиболее эффективным способам решения проблем;

    б) парные сравнения, нормирование и ранжирование требуют однородности оцениваемых признаков, наличия логически обоснованных критериев и эталонов, наличие однозначно определенных процедур оперирования с критериями, эталонами и признаками;

    в) интервью предъявляют специфические требования как к эксперту, так и к интервьюеру;

    г) морфологическая  структуризация требует четкого определения функциональных характеристик объекта или проблемы, которые необходимо улучшить, классификации научных принципов, на основе которых возможно улучшение характеристики; анализа всевозможных комбинаций этих принципов и отсева заведомо абсурдных; оценки комбинаций по степени осуществимости и затрат на их реализацию; сравнения комбинаций по комплексному критерию «затраты — эффективность — время». 

2.4.2 Метод эвристического  прогнозирования  (МЭП)

    Основная  задача, стоящая перед специалистами  по анализу и проектированию больших систем, как правило, заключается в нахождении наиболее оптимальных способов создания более эффективных систем — либо вновь проектируемых, либо модернизируемых. Сложность решения этой задачи состоит в том, что здесь обычно нет возможности найти решение чисто математическими методами, поскольку, как правило, не удается точно определить величины (функционалы), подлежащие оптимизации (экстремализации) в математическом смысле. Это связано не только со сложностью описания функционирования больших систем, но и с такими принципиальными видами, как, например, специфика целей, для достижения которых предназначена система. Во-первых, перед системой может стоять не одна цель, а набор их, что сразу же приводит к задаче векторной оптимизации. Во-вторых, набор целей, поставленных перед системой, может содержать в своем составе чисто качественные цели, не подлежащие практически реализующимся количественным измерениям. Это приводит, с одной стороны, к проблеме оценки степени достижения качественной цели и, с другой — к проблеме соизмерения важности качественных и количественных целей и степени их достижения.

    Метод эвристического прогнозирования -метод получения и специализированной обработки прогнозных оценок объекта путем опроса высококвалифицированных специалистов (экспертов) в узкой области науки, техники или производства. Прогнозные экспертные оценки отражают индивидуальное суждение специалиста относительно перспектив развития его области и основаны на мобилизации профессионального опыта и интуиции.

    Метод эвристического прогнозирования сходен с дельфийской техникой, коллективной генерацией идей и методом коллективной экспертной оценки в том смысле, что одним из элементов его является сбор и обработка суждений экспертов, высказанных на основе профессионального опыта и интуиции. Он отличается большей четкостью теоретических основ, способами формирования анкет и таблиц, порядком работы с экспертами и алгоритмом обработки полученной информации. Эвристическим данный метод назван в связи с однородностью форм мыслительной деятельности эксперта при решении научной проблемы и при оценке перспектив развития объекта прогнозирования, а также в связи с использованием экспертами специфических приемов, приводящих к правдоподобным умозаключениям.

    Назначение  метода эвристического прогнозирования - выявление объективизированного представления о перспективах развития узкой области науки и техники на основе систематизированной обработки прогнозных оценок репрезентативной группы экспертов.

    Область применения МЭП — научно-технические  объекты и проблемы, развитие которых  либо полностью, либо частично не поддается  формализации, т. е. для которых трудно разрабатывать адекватную модель.

    В основе метода лежат три теоретических допущения: 1) существования у эксперта психологической установки на будущее, сформулированной на основе профессионального опыта и интуиции; 2) тождественности процесса эвристического прогнозирования и процесса решения научной проблемы с однотипностью получаемого знания в форме эвристических правдоподобных умозаключений, требующих верификации;

    3) возможности адекватного отображения  тенденции развития объекта прогнозирования в виде системы прогнозных моделей, синтезируемых из прогнозных экспертных оценок.

    Эти допущения реализуются в методе эвристического прогнозирования путем системы приемов работы с экспертами, способами оценок и синтеза прогнозных моделей.

    В качестве исходных документов выступают: описание метода; инструкции по формулированию вопросов; инструкции по составлению анкет и таблиц; порядок работы с экспертами; набор эвристических приемов для экспертов; инструкция для экспертов по заполнению анкет и таблиц; инструкция по обработке на ЭВМ экспертных анкет и таблиц; алгоритмы и программы для обработки данных на ЭВМ; заполненные экспертами анкеты и таблицы; инструкция по оценке компетентности экспертов; инструкция по синтезу прогнозных моделей; набор способов верификации прогнозов.

    Формирование  анкет и таблиц экспертных оценок. Информационным массивом для разработки прогнозов методом эвристического прогнозирования является набор таблиц и анкет. Таблицы содержат перечень сформулированных вопросов. В зависимости от вида вопроса применяется определенная процедура его формулирования и составления анкет.

    К первому виду относятся вопросы, ответы на которые содержат количественную оценку: вопросы о времени свершения событий; опросы относительно количественного значения прогнозируемого параметра; вопросы о вероятности осуществления события; вопросы по оценке влияния факторов друг на друга. Для данного типа вопроса применяется самая простая процедура составления анкет. В этом случае сам прогнозист, знающий объект прогноза, формулирует перечень значений оцениваемых параметров, вероятностей и временных отрезков. При определении шкалы значений количественных параметров (время, характеристика и пр.) целесообразно пользоваться неравномерной шкалой. Конкретное значение неравномерности определяется характером зависимости ошибки прогноза от времени упреждения.

    Ко  второму виду относятся содержательные вопросы, требующие свернутого ответа не в количественной форме. Вопросы, требующие ответа в свернутой форме, могут быть трех типов: дизъюнктивные; конъюнктивные; импликативные.

    Вопросы, требующие содержательного ответа в свернутой форме, характеризуются наиболее сложной процедурой их формирования в анкету. Анкета в окончательном виде получается в результате трехэтапной итерации. На первом этапе прогнозист изучает результат работы группы экспертов над определенной системой. Итогом изучения является формулировка первого варианта вопросника, который на втором этапе рассылается председателям соответствующих комиссий для корректировки и уточнения. В результате получается второй вариант вопросника. На третьем этапе вопросы группируются по темам и в определенном порядке внутри тем. Окончательный вариант вопросника приобретает форму таблиц экспертных оценок.

    К третьему виду относятся вопросы, требующие ответа в развернутой форме, которые, в свою очередь, делятся на два типа:

    1) вопросы с формой ответа в  виде перечня сведений о предмете;

    2) вопросы с формой ответа в  виде перечня аргументов, подтверждающих или отвергающих тезис, содержащийся в вопросе .

Информация о работе Методы прогнозирования