Методы оценки систем

Автор: 8**********@bk.ru, 25 Ноября 2011 в 17:30, курсовая работа

Описание работы

Методы оценивания систем разделяются на качественные и количественные.
Качественные методы используются на начальных этапах моделирования, если реальная система не может быть выражена в количественных характеристиках, отсутствуют описания закономерностей систем в виде аналитических зависимостей. В результате такого моделирования разрабатывается концептуальная модель системы.
Количественные методы используются на последующих этапах моделирования для количественного анализа вариантов системы.

Работа содержит 1 файл

Введение тсиса.doc

— 331.00 Кб (Скачать)

      Целесообразность  применения того или иного метода во многом определяется характером анализируемой информации. Если оправданы лишь качественные оценки объектов по некоторым качественным признакам, то используются методы ранжирования, парного и множественного сравнения.

      Если  характер анализируемой информации таков, что целесообразно получить численные оценки объектов, то можно использовать какой-либо метод численной оценки, начиная от непосредственных численных оценок и кончая более тонкими методами Терстоуна и фон Неймана-Моргенштерна.

      При описании каждого из перечисленных  методов будет предполагаться, что имеется конечное число измеряемых или оцениваемых альтернатив (объектов) А = {а^ ... ,ап} и сформулированы один или несколько признаков сравнения, по которым осуществляется сравнение свойств объектов. Следовательно, методы измерения будут различаться лишь процедурой сравнения объектов. Эта процедура включает построение отношений между объектами эмпирической системы, выбор преобразования ф и определение типа шкал измерений. С учетом изложенных выше обстоятельств рассмотрим каждый метод измерения. 8*

      Ранжирование. Метод представляет собой процедуру  упорядочения объектов, выполняемую экспертом. На основе знаний и опыта эксперт располагает объекты в порядке предпочтения, руководствуясь одним или несколькими выбранными показателями сравнения. В зависимости от вида отношений между объектами возможны различные варианты упорядочения объектов.

      Рассмотрим эти варианты. Пусть среди объектов нет одинаковых по сравниваемым показателям, т.е. нет эквивалентных объектов. В этом случае между объектами существует только отношение строгого порядка. В результате сравнения всех объектов по отношению строгого порядка составляется упорядоченная последовательность а{ > а2> ... > aN, где объект с первым номером является наиболее предпочтительным из всех объектов, объект со вторым номером менее предпочтителен, чем первый объект, но предпочтительнее всех остальных объектов и т.д. Полученная система объектов с отношением строгого порядка при условии сравнимости всех объектов по этому отношению образует полный строгий порядок. Для этого отношения доказано существование числовой системы, элементами которой являются действительные числа, связанные между собой отношением неравенства >. Это означает, что упорядочению объектов соответствует упорядочение чисел х, >... > xn, где х,—ф Ц.). Возможна и обратная последовательность х, <... < xn, в которой наиболее предпочтительному объекту приписывается наименьшее число и по мере убывания предпочтения объектам приписываются большие числа.

      Соответствие  перечисленных последовательностей, т.е. их гомоморфизм, можно осуществить, выбирая любые числовые представления. Единственным ограничением является монотонность преобразования. Следовательно, допустимое преобразование при переходе от одного числового представления к другому должно обладать свойством монотонности. Таким свойством допустимого преобразования обладает шкала порядков, поэтому ранжирование объектов есть измерение в порядковой шкале.

      В практике ранжирования чаще всего применяется  числовое представление последовательности в виде натуральных чисел:  1, 2…0 т.е. используется числовая последовательность. Числа х,, х2,..., xn в этом случае называются рангами и обычно обозначаются буквами г, , г2, ... , rN. Применение строгих численных отношений «больше» (>), «меньше» (<) или «равно» (=) не всегда позволяет установить порядок между объектами. Поэтому наряду с ними используются отношения для определения большей или меньшей степени какого-то качественного признака (отношения частичного порядка, например полезности), отношения типа «более предпочтительно» (>), «менее предпочтительно» (<), «равноценно» ( = ) или «безразлично» (~).

      Для отношения нестрогого линейного  порядка доказано существование числовой системы с отношениями неравенства и равенства между числами, описывающими свойства объектов. Любые две числовые системы для нестрогого линейного порядка связаны между собой монотонным преобразованием. Следовательно, ранжирование при условии наличия эквивалентных объектов представляет собой измерение также в порядковой шкале.

      В практике ранжирования объектов, между  которыми допускаются отношения как строгого порядка, так и эквивалентности, числовое представление выбирается следующим образом. Наиболее предпочтительному объекту присваивается ранг, равный единице, второму по предпочтительности - ранг, равный двум, и т.д. Для эквивалентных объектов удобно с точки зрения технологии последующей обработки экспертных оценок назначать одинаковые ранги, равные среднеарифметическому значению рангов, присваиваемых одинаковым объектам. Такие ранги называют связанными рангами. Для приведенного примера упорядочения на основе нестрогого линейного порядка при N = 10 ранги объектов д3 , а4 , а5 будут равными г3 = г4 = г5 = (3+4+5) /3 = 4.

      В этом же примере ранги объектов й9, а,0 также одинаковы и равны среднеарифметическому r9 = rlo = (9+10) 12 = 9,5. Связанные ранги могут оказаться дробными числами. Удобство использования связанных рангов заключается в том, что сумма рангов N объектов равна сумме натуральных чисел от единицы до N. При этом любые комбинации связанных рангов не изменяют эту сумму. Данное обстоятельство существенно упрощает обработку результатов ранжирования при групповой экспертной оценке.

      При групповом ранжировании каждый S-й эксперт присваивает каждому объекту ранг rjs. В результате проведения экспертизы получается матрица рангов | | ris \ \ размерности Nk, где k - число экспертов; N- число объектов; S=l,k;i=l,N. Результаты группового экспертного ранжирования удобно представить в виде табл. 2.5.

      Аналогичный вид имеет таблица, если осуществляется ранжирование объектов одним экспертом по нескольким показателям сравнения. При этом в таблице вместо экспертов в соответствующих графах указываются показатели. Напомним, что ранги объектов определяют только порядок расположения объектов по показателям сравнения. Ранги как числа не дают возможности сделать вывод о том, на сколько или во сколько раз предпочтительнее один объект по сравнению с другим.

          
 
 

      Таблица 2.5

Результаты  группового ранжирования

Объект э, Э2 ... э*
Й1 г\\ '12 ... r\k
«2 Г21 '22 ... r2k
... ... ...    
ап rnl ГЛ ... rnk

      Достоинство ранжирования как метода экспертного измерения - простота осуществления процедур, не требующая трудоемкого обучения экспертов. Недостатком ранжирования является практическая невозможность упорядочения большого числа объектов. Как показывает опыт, при числе объектов, большем 10-15, эксперты затрудняются в построении ранжировки. Это объясняется тем, что в процессе ранжирования эксперт должен установить взаимосвязь между всеми объектами, рассматривая их как единую совокупность. При увеличении числа объектов количество связей между ними растет пропорционально квадрату числа объектов. Сохранение в памяти и анализ большой совокупности взаимосвязей между объектами ограничиваются психологическими возможностями человека. Психология утверждает, что оперативная память человека позволяет оперировать в среднем не более чем 7 ± 2 объектами одновременно. Поэтому при ранжировании большого числа объектов эксперты могут допускать существенные ошибки.

      Парное  сравнение. Этот метод представляет собой процедуру установления предпочтения объектов при сравнении всех возможных пар. В отличие от ранжирования, в котором осуществляется упорядочение всех объектов, парное сравнение объектов является более простой задачей. При сравнении пары объектов возможно либо отношение строгого порядка, либо отношение эквивалентности. Отсюда следует, что парное сравнение так же, как и ранжирование, есть измерение в порядковой шкале.

      В результате сравнения пары объектов а;, а/ эксперт упорядочивает ее, высказывая либо я, >- а-, либо а, > at, либо at ~ а . Выбор числового представления ф(й(.) можно произвести так: если ai X а» то ф (а(.) > ф (о ); если предпочтение в паре обратное, то знак неравенства заменяется на обратный, т.е. ф (а,) < ф (а,). Если объекты эквивалентны, то можно считать, что ф (я,-) = ф (а ).

      Результаты сравнения всех пар объектов удобно представлять в виде матрицы. Пусть, например, имеются пять объектов а,, а2, а3, а4, а5 и проведено парное сравнение этих объектов по предпочтительности. Результаты сравнения представлены в виде

      Используя числовое представление (2.1), составим матрицу измерения результатов парных сравнений (табл. 2.6).

 

      

      Таблица 2.7

    Таблица 2.6

Результаты  измерения пяти объектов

Матрица парных сравнений 

    а\ °2 аз Й4 °5
а\ \ 2 2 2 0
°2 0 1 2 2 0
Й3 0 0 1 1 0
«4 0 0 1 1 0
°5 2 2 2 2 1
  «1 °2 аЗ °4 а5
«1 1 1 1 1 0
а2 0 1 1 1 0
аз 0 0 1 1 0
а4 0 0 1 1 0
°5 1 1 1 1 1
 

      В табл. 2.6 на диагонали всегда будут  расположены единицы, поскольку объект эквивалентен себе. Представление (2.2) характерно для отображения результатов спортивных состязаний. За выигрыш даются два очка, за ничью одно и за проигрыш ноль очков (футбол, хоккей и т.п.). Предпочтительность одного объекта перед другим трактуется в данном случае как выигрыш одного участника турнира у другого. Таблица результатов измерения при использовании числового представления не отличается от таблиц результатов спортивных турниров за исключением диагональных элементов (обычно в турнирных таблицах диагональные элементы заштрихованы). В качестве примера в табл. 2.7 приведены результаты измерения пяти объектов с использованием представления, соответствующие табл. 2.6.

Информация о работе Методы оценки систем