Автор: Пользователь скрыл имя, 13 Марта 2012 в 00:33, курсовая работа
Развитие ЭВМ стимулировало более интенсивное развитие вычислительных методов, создало предпосылки решения сложных задач науки, техники, экономики. Широкое применение при решении таких задач получили методы прикладной математики и математического моделирования.
В настоящее время прикладная математика и ЭВМ являются одним из определяющих факторов научно-технического прогресса. Они способствуют ускорению развития ведущих отраслей народного хозяйства, открывают принципиально новые возможности моделирования и проектирования сложных систем с выбором оптимальных параметров технологических процессов.
ВВЕДЕНИЕ………………………………………………….……………..3
1. ОБЩЕЕ ПОЛОЖЕНИЕ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЕ
1.1. Понятие «математического моделирование»……………..…..5
1.2. Понятие математического моделирования как методологии научных исследований …………………………………………………..…10
1.3. Моделирование мыслительной деятельности человека ………….11
2. ОСНОВНЫЕ ПРИНЦИПЫ И ЗАДАЧИ МОДЕЛИРОВАНИЯ
2.1. Прямая и обратная задачи математического моделирования...15
2.2. Компьютерные системы моделирования………………..…….…17
3. ПРАКТИЧЕСКОЕ ЗАДАНИЕ
3.1. Общее теоретическое свединия………….……………………………..20
3.2. Неограниченная двухслойная плоская стенка. ……… ……..….…22
ЗАКЛЮЧЕНИЕ…………………………………………..…………………..34
СПИСОК ЛИТЕРАТУРЫ……………………
Для разработки наиболее важных задач в операционных исследованиях широко используются математические модели, построенные на статистической или вероятностной (стохастической) основе. Они помогают учесть даже такие факторы, просчитать точное изменение которых практически невозможно.
Особенно часто применяются математические модели очередей и управления запасами.
1.2. Понятие математического моделирования как методологии научных исследований
Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств.
Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем[3]).
По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.
Математическая модель может возникнуть тремя путями:
В результате прямого изучения реального процесса. Такие модели называются феноменологическими.
В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.
В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.
Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.
Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики.
Схема построения математических моделей следующая:
Выделение параметра или функции, подлежащей исследованию.
Выбор закона, которому подчиняется эта величина.
Выбор области, в которой требуется изучить данное явление.
1.3. Моделирование мыслительной деятельности человека.
Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:
материальность
закономерный характер всех процессов
общность некоторых форм движения материи
отражение
принадлежность к классу самоорганизующихся динамических систем,
в которых заложены:
а) принцип обратной связи
б) структурно-функциональная аналогия
в) способность накапливать информацию[4]
Есть существенные отличия, такие как:
Моделирующему устройству присущи лишь низшие формы движения - физическое, химическое, а мозгу, кроме того - социальное, биологическое;
Процесс отражения в мозге человека проявляется в субъективно-сознательном восприятии внешних воздействий. Мышление возникает в результате взаимодействия субъекта познания с объектом в условиях социальной среды;
В языке человека и машины. Язык человека носит понятийный характер.
Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина «говорит» не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.
Использование математических методов при анализе процессов отражательной деятельности мозга стало возможным благодаря некоторым допущениям, сформулированным Мак-Каллоком и Питтсом. В их основе - абстрагирование от свойств естественного нейрона, от характера обмена веществ и так далее - нейрон рассматривается с чисто функциональной стороны.
Согласно определению Мак-Каллока и Питтса формальный нейрон[5] -это элемент, обладающий следующими свойствами:
Он работает по принципу «все или ничего»;
Он может находиться в одном из двух устойчивых состояний;
Для возбуждения нейрона необходимо возбудить некоторое количество сигналов, не зависящих от предыдущего состояния нейрона;
Имеет место задержка прохождения сигналов в синапсах в течение некоторого времени ;
Имеются два вида входов: возбуждающие и тормозящие;
Порог возбуждения предполагается неизменным;
Возбуждение любого тормозящего синапса предотвращает возбуждение нейрона, независимо от числа возбужденных сигналов.
Искусственный нейрон, смоделированный Мак-Каллоком и Питтсом, имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации возбуждения нейрона. Схема представления искусственного нейрона приведена на рисунке 1.
Выходы Выход
Рис.1. искуственный нейрон.
Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и других) отвлечены от качественной специфики естественных нейронов. Однако с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным.
Существует ряд подходов к изучению мозговой деятельности:
теория автоматического регулирования (живые системы рассматриваются в качестве своеобразного идеального объекта);
информационный (пришел на смену энергетическому подходу).
Его основные принципы:
а) выделение информационных связей внутри системы
б) выделение сигнала из шума
в) вероятностный характер
Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н.М. Амосова[6], создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности:
не все функции и специфические свойства учитываются
отвлечение от социального, нейродинамического характера.
Таким образом, делается вывод о критическом отношении к данному методу (нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений).
2. ОСНОВНЫЕ ПРИНЦИПЫ И ЗАДАЧИ МОДЕЛИРОВАНИЯ
2.1. Прямая и обратная задачи математического моделирования.
Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.
Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.
Прямая задача: структура модели и все её параметры считаются известными, главная задача — провести исследование модели для извлечения полезного знания об объекте. Допустим, какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера, — вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический мост через реку Тей, конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул[7].
В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.
Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение).
Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И.Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.
В качестве другого примера можно привести математическую статистику. Задача этой науки — разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений[8]. То есть множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.
2.2. Компьютерные системы моделирования
Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т.н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.
Компьютерная модель (англ. computer model), или численная модель (англ. computational model) - компьютерная программа, работающая на отдельном компьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы. Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии и других науках. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения математических систем, слишком сложных для аналитического исследования.