Автор: Пользователь скрыл имя, 14 Декабря 2011 в 19:23, реферат
Есть различные точки зрения на процессы, происходящие в нашем обществе в настоящий момент. Но независимо от того как различные политические силы воспринимают эти процессы (как откат назад или как прогресс, движение вперед ), ни одна их них не может отрицать того, что экономические условия жизни стали намного
сложнее. Стало намного труднее принять решение, как касающееся частных интересов, так и общественных. Эти трудности не могли не вызвать волны нового интереса к математическим методам, применяемым в экономике; т.е. к тем методам, которые позволили бы выбрать наилучшую стратегию как на ближайшее будущее, так и на дальнюю перспективу. В то же время многие люди в таких случаях предпочитают обращаться к собственной интуиции, опыту, или же к чему-то сверхественному. Следовательно, необходимо оценить роль математических методов в экономических исследованиях - насколько полно они описывают все возможные решения и предсказывают наилучшее, или даже так: стоит ли их использовать вообще?
Кроме того, экономические
системы развиваются и
3. Особенности математических
методов, применяемых к
В экономических
исследованиях издавна
Не стоит и говорить
о применении арифметики, алгебры
в экономических исследованиях,
это уже вопрос о культуре исследования,
каждый уважающий себя экономист
владеет такими навыками. Особняком
здесь стоят так называемые методы
оптимизации, чаще называемые как экономико-математические
методы.
В 60-е годы нашего
столетия развернулась дискуссия о
математических методах в экономике.
Например, академик Немчинов выделял
пять базовых методов исследования
при планировании:
1) балансовый метод;
2) метод математического
моделирования;
3) векторно-матричный
метод;
4) метод экономико-
5) метод последовательного
приближения.[9 (153)].
В то же время академик
Канторович выделял математические
методы в четыре группы:
- макроэкономические
модели, куда относил балансовый
метод и модели спроса;
- модели взаимодействия
экономических подразделений (
- линейное моделирование,
включая ряд задач, немного
отличающихся от классического
линейного программирования;
- модели оптимизации,
выходящие за пределы
И с той, и с
другой классификацией можно спорить,
поскольку, например модели спроса можно
по ряду особенностей отнести к нелинейному
программированию, а стохастическое
моделирование уходит корнями в
теорию игр. Но все это проблемы классификации,
которые имеют определенное методологическое
значение, но в данном случае не столь
важны.
С точки же зрения
роли математических методов стоит
говорить лишь о широте применения
различных методов в реальных
процессах планирования.
С этой точки зрения
несомненным лидером является метод
линейной оптимизации, который был
разработан академиком Канторовичем в
30-е годы ХХ-го века. Чаще всего задача
линейного программирования применяется
при моделировании организации
производства. Вот как по Канторовичу
выглядит математическая модель организации
производства:
В производстве участвуют
M различных производственных факторов
(ингредиентов) - рабочая сила, сырье,
материалы, оборудование, конечные и
промежуточные продукты и др. Производство
использует S технологических способов
производства, причем для каждого
из них заданы объемы производимых
ингредиентов, рассчитанные на реализацию
этого способа с единичной
эффективностью, т.е. задан вектор ak
= (a1k, a2k,..., amk ), k = 1,2...,S, в котором каждая
из компонент aik указывает объем
производства соответствующего ( i-го )
ингредиента, если она положительна;
и объем его расходования, если
она отрицательна ( в способе k ).
Выбор плана означает
указание интенсивностей использования
различных технологических
Обычно на количества
выпускаемых и затрачиваемых
ингредиентов накладываются ограничения:
произвести нужно не менее, чем требуется,
а затрачивать не больше, чем имеется.
Такие ограничения записываются
в виде
s
S a ikxk > bi ; i=1,2,...,m. (1)
k=1
Если i > 0, то неравенство
означает, что имеется потребность
в ингредиенте в размере i, если
i < 0,то неравенство означает, что
имеется ресурс данного ингредиентов
размере - i =¦ i¦. Далее предполагается,
что использование каждого
s
f(x) = S ckxk. (2)
k=1
Теперь общая задача
линейного программирования может
быть представлена в математической
форме.
Для заданных чисел
aik, ck, и bi найти
s
min S ckxk
k=1
при условиях
k > 0, k = 1,2,...,s [1]
s
S aikxk > bi, i = 1,2,...,m [2]
k=1
План, удовлетворяющий
условиям [1] и [2], является допустимым,
а если в нем , кроме того, достигается
минимум целевой функции, то этот
план оптимальный.[K33]
Задача линейного
программирования двойственна, то есть,
если прямая задача имеет решение, (вектор
x =( x1, x2,..., xk)), то существует и имеет
решение обратная задача основанная
на транспонировании матрицы прямой
задачи. Решением обратной задачи является
вектор y = ( y1, y2... ,ym)компоненты которого
можно рассматривать как
На основе объективно
обусловленных оценок американским
математиком Дж. Данцигом - был разработан
симплекс-метод решения задач
оптимального программирования. Этот
метод весьма широко применяется. Алгоритм
его весьма детально проработан, и
даже составлены прикладные пакеты программ,
которые применяются во многих отраслях
планирования.
Метод линейной оптимизации
с того момента, как он был разработан
Канторовичем, не оставался без изменений,
он развивался и продолжает развиваться.
Например, формула (2) в современной
интерпретации выглядит следующим
образом.
S aij xj < bi (i Î I) (3)
j ÎA1
В чем же отличие?
Во-первых ограничение
записывается не больше, либо равно , а
меньше, либо равно, что больше соответствует
экономическому смыслу правой стороны
ограничения (bi - количество ресурсов).
У Канторовича же ресурс записывается
- bi = ¦bi¦ - т.е. отрицательным числом,
что для экономического склада ума
неестественно ( как может быть ресурса
меньше нуля).
Во-вторых, суммирование
производится не по всем способам производства,
а лишь по определенному их подмножеству
(j Î A1),что также соответствует
экономическим реалиям, когда по
технологическим, или другим причинам
не все способы производства участвуют
в каком-либо конкретном ограничении.
Аналогично и с
ресурсами, в ограничении участвуют
не все ресурсы сразу , а какое-то
их подмножество (i Î I).
Введением подмножеств
не ограничилось совершенствование
метода линейной оптимизации. Нужды
практики заставили разработать
еще целый ряд приемов и
методов для различных случаев
описания реалий хозяйственной практики
в виде ограничений. Это такие
приемы, как запись ограничений по
использованию производственных ресурсов,
запись ограничений по гарантированному
объему работ или производства продукции,
приемы моделирования при неизвестных
значениях показателей и многие
другие, на которых здесь не стоит
останавливаться.
Цель всех этих приемов
- дать более развернутую модель
какого-либо явления из хозяйственной
практики, сэкономив при этом на
количестве переменных и ограничений.
Несмотря на широту
применения метода линейного программирования,
он учитывает лишь три особенности
экономических задач - большое количество
переменных, ограниченность ресурсов
и необходимость целевой
Теперь можно поставить
задачу в математической форме. Найти
max y1(x1)+ y2(x2)+ ... + yn(xn) (4)
(общий доход от
использования ресурсов всеми
способами) при условиях:
- выделяемые количества
ресурсов неотрицательны;
[1] x1 > 0,..., xN > 0
- общее количество
ресурсов равно x .
[2] x1 + x2 + ... + xN = x
Для этого общей
задачи могут быть построены рекуррентные
соотношения
¦1(x) = max {j1(x1)}, (5)
0 <=X1<= X
¦k(x) = max {jk(xk)+ ¦k-1(x - xk)}.
(6)
к = 2,3,..., N,
с помощью которых
находится ее решение.
При выводе этих рекуррентных
соотношений, по сути, использовался
следующий принцип, оптимальная
стратегия обладает тем свойством,
что по отношению к любому первоначальному
состоянию после некоторого этапа решения
совокупность последующих решений должна
составлять оптимальную стратегию. Этот
принцип оптимальности лежит в основе
всей концепции динамического программирования.
Именно благодаря ему удается при последующих
переходах испытывать не все возможные
варианты, а лишь оптимальные выходы. Рекуррентные
соотношения позволяют заменить чрезвычайно-трудоемкие
вычисления максимума по N переменным
в исходной задаче решением N задач, в каждой
из которых максимум находится лишь по
одной переменной.
Таким образом, метод
динамического программирования позволяет
учесть такую важную особенность
экономических задач, как детерминированность
более поздних решений от более
ранних.
Кроме этих двух, достаточно
детально разработанных методов, в
экономических исследованиях в
последнее время стали
Одним из подходов к
решению экономических задач
является подход, основанный на применении
новой математической дисциплины -
теории игр.
Суть этой теории
заключается в том, что игрок (участник
экономических взаимоотношений) должен
выбрать оптимальную стратегию
в зависимости от того, какими он
представляет действия противников (конкурентов,
факторов внешней среды и т.д.).
В зависимости от того, насколько
игрок осведомлен о возможных
действиях противников, игры (а под
игрой здесь понимается совокупность
правил, тогда сам процесс игры
это партия) бывают открытые и закрытые.
При открытой игре оптимальной стратегией
будет выбор максимального
Кроме этого в
реальной жизни число игроков
редко бывает равно всего двум.
При большем же числе игроков
появляются возможности для кооперативной
игры, когда игроки до начала игры могут
образовывать коалиции и соответственно
влиять на ход игры.