Автор: Пользователь скрыл имя, 21 Декабря 2011 в 17:01, реферат
Рыночная ориентация все больше требует от хозяйственных руководителей умения видеть перспективы, принимать эффективные стратегические управленческие решения в сложившихся рискованных условиях хозяйствования. Кроме того, в целях обеспечения устойчивости функционирования предприятий в изменяющихся, неопределенных условиях хозяйствования необходимо соблюдение и использование основных принципов стратегического менеджмента, реализация которых должна осуществляться, прежде всего, через принятие эффективных управленческих решений, основанных на системном подходе, анализе внешних и внутренних факторов, прямо или косвенно влияющих на деятельность предприятия.
В этой связи существенно возрастает роль концептуальных и практически значимых разработок по проблемам принятия управленческих решений с учетом факторов риска и неопределенности
ВВЕДЕНИЕ………………………………………………………………………..3
1. Теоретические определения………………………………………………4
2. Технология разработки и реализации УР………………………………6
3. Классификация факторов неопределенности……………………………8
4. Технология принятия УР в условиях неопределенности………………13
5. Методы принятия решений в условиях природной неопределенности.14
ЗАКЛЮЧЕНИЕ………………………………………………………………….24
КЛЮЧЕВЫЕ СЛОВА………………………………………………………….27
Второй
признак классификации
К вероятностной
неопределенности относят влияние случайных
факторов, т.е. таких неопределенных факторов,
которые при массовом появлении обладают
свойством статистической устойчивости
и описываются некоторым законом распределения
вероятности. Если закон распределения
и числовые характеристики случайной
величины известны, то с их помощью можно
относительно легко вычислить вероятность
любого события, которое этому закону
подчиняется. Когда закон распределения
неизвестен, то решение принимается в
условиях статистической неопределенности,
которая, в свою очередь, делится на два
вида -
с известными и неизвестными параметрами
распределения (числовыми характеристиками).
К параметрам распределения, как известно,
относятся математическое ожидание, дисперсия
и другие характеристики случайной величины.
Статистическая неопределенность менее
«желательна», поскольку в таких ситуациях
для определения закона распределения
и вычисления вероятностей требуются
накопление и обработка достаточно большого
объема статистической информации, что
не всегда возможно осуществить на практике.
Во
многих случаях, когда отсутствует
объективная информация, люди часто
оценивают вероятности событий
субъективно с помощью
Таким
образом, случайные факторы –
это самый «удобный» вид
Неопределенность
уверенности характеризуется влиянием
неслучайных факторов, т.е. таких факторов,
которые не обладают свойством статистической
устойчивости. Подобного рода неопределенность
возникает, когда требующие учета факторы
по своей природе не описываются никаким
законом распределения либо эти факторы
настолько новы и сложны, что о них невозможно
получить достаточно достоверной информации.
В итоге вероятность того, что неопределенные
факторы примут некоторое значение, невозможно
получить с требуемой точностью. Другими
словами, неопределенность уверенности
– это неизвестность, которая обусловлена
нехваткой или отсутствием информации
о личностных
или ситуационных факторах, не подчиняющихся
законам теории вероятностей. Например,
к таким факторам относятся изменчивость
психических состояний ЛПР, его индивидуальные
психические свойства, нечеткие или противоречивые
цели деятельности, поведение конкурентов
и поставщиков, изменение экономических и
политических условий, появление новых
технологий, законов и решений правительства.
Наиболее
простой пример, демонстрирующий
различия между вероятностной
по 100 шаров. При этом известно, что первой
урне - 50 белых и 50 черных шаров. Вместе
с тем, относительно второй урны нельзя
сказать, сколько шаров каждого цвета
там находится (в частности, возможен случай,
когда во второй урне шары только одного
цвета – белого или черного). Некто должен
достать шар из урны и, не глядя назвать
его цвет. В первом случае человек находится
в условиях вероятностной неопределенности,
так как ему известно соотношение шаров
и, следовательно, вероятность каждого
случайного исхода. Очевидно, что эта вероятность
равна 0,5 для белых и 0,5 для черных шаров.
Во втором случае, когда число шаров каждого
цвета неизвестно, человек находится в
условиях неопределенности уверенности,
так как ему неизвестна вероятность того
или иного исхода, и отсутствует информация,
которая позволяет эти вероятности оценить.
В
самом худшем случае, когда отсутствует
вообще какая-либо информация о факторах,
влияющих на принятие решений, имеет место полная
неопределенность. Однако на практике
очень немногие управленческие решения
приходиться принимать в условиях полной
неопределенности. Это объясняется следующими
причинами. Во-первых, у ЛПР всегда
существует принципиальная возможность
получения дополнительной информации
о неизвестных факторах. Этим часто удается
уменьшить новизну и сложность проблемы.
Например, решение о разработке нового
товара принимается после проведения
маркетингового исследования, в ходе которого
собирается информация о предпочтениях
потребителей, поведении конкурентов
и других факторах. Во-вторых, ЛПР может
действовать по аналогии с прошлым опытом,
чтобы сделать предположения о вероятности
или об ожидаемых значениях неопределенных
факторов. Например, если экономическая
и политическая ситуации на протяжении
долгого времени оставались стабильными, то
можно предположить, что в ближайшей перспективе
они существенно не изменятся. Использование
прошлого опыта крайне необходимо, когда
не хватает времени на сбор дополнительной
информации или затраты на нее слишком
велики. В-третьих, неслучайные факторы
иногда удается перевести в разряд случайных
с помощью рандомизации. Под рандомизацией
понимают искусственное введение случайности в
ситуацию, где она отсутствует. Например,
принятие решения о разработке нового
товара может зависеть от того, какую стратегию
поведения на рынке выберет основной конкурент.
Точная стратегия конкурента неизвестна,
но и неслучайна. Однако можно выдвинуть
ряд гипотез об основных вариантах поведения
конкурента и предположить, что в пределах
этого набора он будет применять смешанную
стратегию на основе некоторого распределения
вероятности, которое введено на множестве
так называемых чистых стратегий. Такой
прием используется, если ситуация выбора
описывается с помощью игровых моделей,
в частности матричных игр. Далее, после
рандомизации, проблемную ситуацию можно
исследовать, используя методы теории
вероятностей и математической статистики.
По сравнению с задачами, решаемыми в условиях определенности, задачи обоснования решений в условиях неопределенности имеют ряд отличительных особенностей. Прежде всего заметим, что для задач в условиях определенности каждая стратегия ЛПР однозначно приводила к вполне определенному результату, а в условиях неопределенности каждой фиксированной стратегии ставится в соответствие множество возможных значений результатов.
Источниками
неопределенности
ожидаемых условий в развитии предприятия
могут служить поведение конкурентов,
персонала организации, технические и
технологические процессы и изменения
конъюнктурного характера. При этом условия
могут подразделяться на социально-политические,
административно-
Сталкиваясь с неопределенностью, руководитель может использовать две основные возможности. Во-первых, попытаться получить дополнительную релевантную информацию и еще раз проанализировать проблему. Этим часто удается уменьшить новизну и сложность проблемы. Руководитель сочетает эту дополнительную информацию и анализ с накопленным опытом, способностью к суждению или интуицией, чтобы придать ряду результатов субъективную или предполагаемую вероятность.
Вторая возможность – действовать в точном соответствии с прошлым опытом, суждениями или интуицией и сделать предположение о вероятности событий. Временные и информационные ограничения имеют важнейшее значение при принятии управленческих решений.
В ситуации риска можно, используя теорию вероятности, рассчитать вероятность того или иного изменения среды, в ситуации неопределенности значения вероятности получить нельзя.
Неопределенность
проявляется в невозможности
определения вероятности
Другие
особенности связаны с тем, что
для ЛПР оказываются
Следует заметить, что в большинстве случаев понятие "риск" обычно связывалось только со случаем стохастической неопределенности. При этом риск оценивался либо как вероятность получения менее предпочтительных результатов, либо как величина возможных (обычно средних) потерь, либо как всевозможные свертки отдельных числовых характеристик распределения скалярного результата. Такое толкование не подходит, например, к случаю нестохастической, поведенческой и априорной неопределенности. Во всех таких случаях риск следует определять как дополнительную "плату" либо за возможность получения наиболее благоприятного исхода, либо за возможность получения информации о наиболее благоприятном исходе в операции (эта информация затем может быть использована для принятия более выгодного решения).
Таким
образом, обосновывая решение, ЛПР
вынуждено учитывать как
Вначале
рассмотрим в каком-то смысле типичные
примеры ситуаций выработки решений
в условиях неопределенности и на
их основе определим характерные
особенности различных
Постановка задачи выбора в условиях неопределенности
Итак, для установления особенностей различных типов задач в условиях неопределенности рассмотрим несколько содержательных гипотетических примеров.
Пример
ЛПР
- устроитель лотереи. Для привлечения
участников игры им установлены п
выигрышей (призов), равных по величине
yl, у2, уЗ,..., уп. Величины yi и вероятности
Pi(a) = P(Y=yi(a)) получения игроками этих выигрышей
выбираются ЛПР и устанавливаются своей
стратегией а так, чтобы риск финансового
краха устроителя лотереи был бы в установленных
границах, а прибыль от лотереи - не ниже
требуемого уровня.
Рассмотрим
теперь основные критерии выбора решений
в условиях природной неопределенности
(игра с природой) применительно
к простейшему случаю, когда результат
скалярный и его желательно максимизировать.
В зависимости от типа отношения
ЛПР к риску гарантированный
результат формируется по-
Если ЛПР при выборе решения абсолютно не приемлет риска (абсолютно не склонен к риску), то оно всегда предпочитает ориентироваться на самые неблагоприятные значения состояний s природы. В этом случае гарантированный результат определяется функцией min y(a, s).
Наилучшей
стратегией будет та, которая обеспечивает
наибольший из гарантированных результатов
для всех возможных стратегий. Таким
образом, критерий выбора для ЛПР, абсолютно
не склонного к риску, имеет вид:
Информация о работе Принятие управленческих решений в условиях неопределенности