Автор: Пользователь скрыл имя, 21 Февраля 2012 в 17:11, курсовая работа
Проблема принятия решений составляет суть любой целенаправленной человеческой деятельности. Вместе с тем она, несмотря на всё многообразие возможных условий и ситуаций, в которых осуществляется выбор, носит достаточно универсальный характер.
Pij – вероятность появления j-го исхода при реализации i-й стратегии.
Из выражений (**) и (***) следует, что оптимальная стратегия X приводит к гарантированному наилучшему результату только при многократном повторении ситуации в одинаковых условиях. Эффективность каждого отдельного выбора связана с риском и может отличаться от средней величины как в лучшую, так и в худшую сторону.
Сравнение двух рассмотренных принципов оптимизации в стохастических ЗПР показывает, что они представляют собой детерминацию исходной задачи на разных уровнях влияния стохастических факторов. ”Искусственное сведение к детерминированной схеме” представляет собой детерминизацию на уровне факторов, а “оптимизация в среднем” - на уровне показателя эффективности.
После выполнения детерминизации могут быть использованы все методы, применимые для решения однокритериальных стохастических детерминированных ЗПР.
Рассмотрим пример однокритериальной статической задачи принятия решений в условиях риска:
Для создания картографической базы данных необходимо кодировать картографическую информацию. Использование поэлементного кодирования приводит к необходимости использования чрезвычайно больших объёмов памяти Известен ряд методов кодирования, позволяющих существенно сократить требуемый объём памяти (например, линейная интерполяция, интерполяция классическими многочленами, кубические сплайны и т.п.). Основным показателем эффективности метода кодирования является коэффициент сжатия информации. Однако значение этого коэффициента зависит от вида кодируемой картографической информации (гидрография, границы административных районов, дорожная сеть и т.п.). Обозначим через Qij (i=1,…,n;j=1,…,m) значение коэффициента сжатия i-го метода кодирования для j-го вида информации. Конкретный район, подлежащий кодированию, заранее неизвестен. Однако предварительный анализ картографической информации всего региона и опыт предыдущих разработок позволяют вычислить вероятность появления каждого вида информации. Обозначим через Pj вероятность появления j-го вида . Тогда, используя метод оптимизации в среднем, следует выбрать такой метод кодирования, для которого:
Принятие решений в условиях неопределённости.
Прежде всего отметим принципиальное различие между стохастическими факторами, приводящими к принятию решения в условиях риска, и неопределёнными факторами, приводящими к принятию решения в условиях неопределённости. И те, и другие приводят к разбросу возможных исходов результатов управления. Но стохастические факторы полностью описываются известной стохастической информацией, эта информация и позволяет выбрать лучшее в среднем решение. Применительно к неопределённым факторам подобная информация отсутствует.
В общем случае неопределённость может быть вызвана либо противодействием разумного противника, либо недостаточной осведомлённостью об условиях, в которых осуществляется выбор решения.
Принятие решений в условиях разумного противодействия является объектом исследования теории игр. Мы не будем касаться этих вопросов.
Рассмотрим принципы выбора решений при наличии недостаточной осведомлённости относительно условий, в которых осуществляется выбор. Такие ситуации принято называть “играми с природой”.
В терминах “игр с природой” задача принятия решений может быть сформулирована следующим образом:
Пусть лицо, принимающее решение, может выбрать один из m возможных вариантов своих решений X1,X2,…,XMи пусть относительно условий , в которых будут реализованы возможные варианты, можно сделать n предположений Y1,Y2,
Теория статистических решений предлагает несколько критериев оптимальности выбора решений. Выбор того или иного критерия неформализуем, он осуществляется человеком, принимающим решения, субъективно, исходя из его опыта, интуиции и т.п. Рассмотрим эти критерии.
Критерий Лапласа: поскольку вероятности возникновения той или иной ситуации Yj неизвестны, будем их все считать равновероятными. Тогда для каждой строки матрицы выигрышей подсчитывается среднее арифметическое значение оценок. Оптимальному решению будет соответствовать такое решение, которому соответствует максимальное значение этого среднего арифметического, то есть
Критерий Вальда: в каждой строке матрицы выбираем минимальную оценку. Оптимальному решению соответствует такое решение, которому соответствует максимум этого минимума, то есть
Этот критерий очень осторожен. Он ориентирован на наихудшие условия, только среди которых и отыскивается наилучший, и теперь уже гарантированный результат.
Критерий Сэвиджа: в каждом столбце матрицы находится максимальная оценка и составляется новая матрица, элементы которой определяются соотношением:
Величину rijназывают риском, под которым понимают разность между максимальным выигрышем, который имел бы место, если бы было достоверно известно, что наступит ситуация Yj, и выигрыш при выборе решения Xi в условиях Yj. Эта новая матрица называется матрицей рисков. Далее из матрицы рисков выбирают такое решение, при котором величина риска принимает наименьшее значение в самой неблагоприятной ситуации, то есть
.
Сущность этого критерия заключается в минимизации риска. Как и критерий Вальда, критерий Сэвиджа очень осторожен. Они различаются разным пониманием худшей ситуации: в первом случае – это минимальный выигрыш, во втором – максимальная потеря выигрыша по сравнению с тем, чего можно было бы достичь в данных условиях.
Критерий Гурвица: вводится некоторый коэффициент , называемый коэффициентом оптимизма, 01. В каждой строке матрицы выигрышей находится самая большая оценка и самая маленькая . Они умножаются соответственно на и (1-) и затем вычисляется их сумма. Оптимальному решению будет соответствовать такое решение, которому соответствует максимум этой суммы, то есть
.
При =0 критерий Гурвица трансформируется в критерий Вальда. Это случай ”крайнего пессимизма”. При =1 (случай крайнего оптимизма) человек, принимающий решение, рассчитывает на то, что ему будет сопутствовать самая благоприятная ситуация. Коэффициент оптимизма назначается субъективно, исходя из опыта, интуиции и т.п. Чем более опасна ситуация, тем более осторожным должен быть подход к выбору решения и тем меньшее значение присваивается коэффициенту .
Примером принятия решения в условиях неопределённости может служить рассмотренная ранее задача выбора метода кодирования картографической информации, когда вероятности появления того или иного вида этой информации неизвестны.
Многокритериальные задачи принятия решений.
Пусть, как и прежде, необходимо выбрать одно из множества решений X из области xих допустимых значений. Но, в отличие от рассмотренного ранее, каждое выбранное решение оценивается совокупностью критериев f1,f2,…,fk, которые могут различаться своими коэффициентами относительной важности (1…k). Критерии fq, q=1..k, называют частными или локальными критериями, они образуют интегральный или векторный критерий оптимальности F={fq}. Коэффициенты образуют вектор важности . Каждый локальный критерий характеризует некоторую локальную цель принимаемого решения.
Оптимальное решение X должно удовлетворять соотношению:
где: F – оптимальное решение интегрального критерия;
opt – оператор оптимизации, он определяет выбранный принцип оптими
зации.
Область допустимых решений xможет быть разбита на две непересекающиеся части:
– область согласия, в которой качество решения может быть улучшено одновременно по всем локальным критериям или без снижения уровня любого из критериев;
– область компромиссов, в которой улучшение качества решения по одним локальным критериям приводит к ухудшению качества решения по другим.
Очевидно, что оптимальное решение может принадлежать только области компромиссов, так как в области согласия решение может и должно быть улучшено по соответствующим критериям.
Выделение области компромисса сужает область возможных решений, но для выбора одного-единственного варианта решения необходимо выбрать схему компромисса, то есть раскрыть смысл оператора оптимизации opt. Этот выбор осуществляется субъективно.
Рассмотрим основные схемы компромисса, предполагая вначале, что все локальные критерии нормализованы (то есть имеют одинаковую размерность или являются безразмерными величинами) и одинаково важны. Рассмотрение удобно вести, перейдя от пространства xвыбираемых решений X к пространству kвозможных (допустимых) локальных критериев F={f1,f2,…,fk}, деля его на область согласия и область компромиссов.
Тогда сформулированную ранее модель оптимизации можно переписать в виде:
Основными схемами компромисса являются:
- принцип равномерности;
- принцип справедливой уступки;
- принцип выделения одного оптимизируемого критерия;
- принцип последовательной уступки.
Принцип равномерности провозглашает целесообразность выбора такого варианта решения, при котором достигалась бы некоторая “равномерность” показателей по всем локальным критериям. Используют следующие реализации принципа равномерности:
- принцип равенства;
- принцип максимина;
- принцип квазиравенства.
Принцип равенства формально выражается следующим образом:
,
то есть оптимальным считается вариант, принадлежащий области компромиссов, при котором все значения локальных критериев равны между собой. Однако случай f1=f2=…=fkможет не попасть в область компромиссов или вообще не принадлежать к области допустимых вариантов.
Принцип максимина формально выражается следующим образом:
.
В случае применения этого принципа из области компромиссов выбирается вариант с минимальными значениями локальных критериев и среди них ищется вариант, имеющий максимальное значение. Равномерность в этом случае обеспечивается за счёт “подтягивания” критерия с наименьшим уровнем.
Принцип квазиравенства заключается в том, что стремятся достичь приближённого равенства всех локальных критериев. Приближение характеризуется некоторой величиной . Это принцип может быть использован в дискретном случае.
Следует отметить, что принципы равенства, несмотря на их привлекательность, не могут быть рекомендованы во всех случаях. Иногда даже небольшое отклонение от равномерности может дать значительный прирост одному из критериев.
Принцип справедливой уступки основан на сопоставлении и оценке прироста и убыли величины локальных критериев. Переход от одного варианта к другому, если они оба принадлежат области компромиссов, неизбежно связан с улучшением по одним критериям и ухудшением по другим. Сопоставление и оценка изменения значения локальных критериев может производиться по абсолютному значению прироста и убыли критериев (принцип абсолютной уступки), либо по относительному (принцип относительной уступки).
Принцип абсолютной уступки может быть формально выражен с помощью следующей записи:
, где
-подмножество мажорируемых критериев, то есть таких, для которых ;
-подмножество минорируемых критериев, то есть таких, для которых ;
,-абсолютное значение приращения критериев;
-символ “такой, для которого”.
Таким образом, целесообразным считается выбрать такой вариант, для которого абсолютное значение суммы снижения одного или нескольких критериев не превосходит абсолютное значение суммы повышения оставшихся критериев.
Можно показать, что принципу абсолютной уступки соответствует модель максимизации суммы критериев:
.
Недостатком принципа абсолютной уступки является то, что он допускает резкую дифференциацию уровней отдельных критериев, так как высокое значение интегрального критерия может быть получено за счёт высокого уровня одних локальных критериев при сравнительно малых значениях других критериев.
Принцип относительной уступки может быть записан в виде:
, где
-относительные изменения критериев;
- максимальные значения критериев.
Целесообразно выбрать тот вариант, при котором суммарный относительный уровень снижения одних критериев меньше суммарного относительного уровня повышения других критериев.
Можно сказать, что принципу относительной уступки соответствует модель максимизации произведения критериев
.
Принцип относительной уступки весьма чувствителен к величине критериев, причём за счёт относительности уступки происходит автоматическое снижение “цены” уступки для локальных критериев с большой величиной и наоборот. В результате проводится значительное сглаживание уровней локальных критериев. Важным преимуществом принципа относительной уступки является также то, что он инвариантен к масштабу изменения критериев, то есть его использование не требует предварительной нормализации локальных критериев.