Обеспечение радиационной безопасности пищевых продуктов

Автор: Пользователь скрыл имя, 17 Января 2012 в 15:56, курсовая работа

Описание работы

Из приведенных в работе материалов видно, что организм человека постоянно подвергается радиоактивному воздействию как от естественных источников радиации, так и от искусственных, обусловленных человеческой деятельностью.

Содержание

Введение...................................................................................................................3
1.Понятие о радиоактивности и ионизирующем излучении…………………...4
2.Источники и пути поступления радионуклидов в организм…………………7
3.Биологическое действие радиации на человеческий организм…………….15
4.Технологические способы снижения радионуклидов в пищевой продукции………………………………………………………………………...23
Заключение……………………………………………………………………….29
Список использованной литературы…………………………………………...30

Работа содержит 1 файл

Курсовая по БСиПП.doc

— 167.50 Кб (Скачать)

     Радиоактивные изотопы используются также в  других светящихся устройствах: указателях входа-выхода, в компасах, телефонных дисках, прицелах, в дросселях флуоресцентных светильников и других электроприборах и т.д.

     При производстве детекторов дыма принцип  их действия часто основан на использовании -излучения. При изготовлении особо тонких оптических линз применяется торий, а для придания искусственного блеска зубам используют уран. Очень незначительны дозы облучения от цветных телевизоров и рентгеновских аппаратов для проверки багажа пассажиров в аэропортах.  

     Пути  поступления радионуклидов в организм 

     Источники внешнего облучения являются космическое  излучение и естественные радионуклиды, содержащиеся в почве, воде и воздухе  а также рентгенодиагностические  процедуры, цветные телевизоры и  полеты на самолетах на больших высотах. Хотя вклад двух последних факторов и невелик.

     Уровни  облучения населения за счет глобальных выпадений продуктов ядерных  взрывов в настоящее время  существенно снизилось по сравнению  с годами максимальных выпадений  в 1963 - 1966 годах.

     Каково  соотношение внешнего и внутреннего облучения? Например, после Чернобыльской аварии в течение первых двух лет внешнее достигало 90% от общей дозы, затем стало преобладать внутреннее облучение, подступившее в 1992 г. к 80%.

     Природные радиоактивные элементы содержаться  в строительных материалах, особенно в бетонных конструкциях. Плохая вентиляция, особенно в домах с плотно закрывающимися окнами, может увеличить дозу облучения, обусловленную вдыханием радиоактивных аэрозолей за счет распада газа радона, который образуется в свою очередь при естественном распаде радия, содержащегося в почве и строительных материалах. Использование в сельском хозяйстве фосфорных удобрений, содержащих естественные радионуклиды рядов урана и тория, является дополнительным фактором облучения организма человека. Эти радионуклиды накапливаются в почве, затем с пылью и продуктами питания попадают в организм. Могут выбрасывать в атмосферу радиоактивную золу тепловые электростанции. Облучение зависит то исходного сырья, условий его сгорания, эффективности золоулавливающих систем. Человек может получать некоторую дозу за счет газо-аэрозольных выбросов атомных электростанций и оседания на почву техногенных радионуклидов.  

     Выпадающие  на поверхность почвы радионуклиды на протяжении многих лет остаются в ее верхних слоях. Если почвы бедны такими минеральными компонентами, как кальций, калий, натрий, фосфор, то связываются благоприятные условия для миграции радионуклидов в самих почвах и по цепи почва - растение. В первую очередь это относится к дерново-подзолистым и песчано-суглинистым почвам. Так, например, лишайники в тундре на почвах, бедных минеральными компонентами, захватывают цезий-137 в 200 - 400 раз больше, чем травы. Это обстоятельство способствует накоплению в организме северных оленей повышенного количества радионуклидов. В черноземных почвах подвижность радионуклидов крайне затруднена.

     Аккумулятором радионуклидов является лес, особенно хвойный, который содержит в 5 - 7 раз  больше радионуклидов, чем другие природные  ценозы. При пожарах сконцентрированные в лесной подстилке, коре древесине радионуклиды поднимаются с дымовыми частицами в воздух и попадают в тропосферу и даже стратосферу. Радиоактивному облучению, таким образом, подвергается население на значительных территориях. А пожары в Свердловской, Челябинской, Тюменской и Курганской областях только в 1989 г. дали 23% всех лесных пожаров бывшего СССР.

     Мало  радиоактивных веществ поступает  в рацион с пищевыми продуктами морского происхождения, так как из-за высокой  минерализации морской воды продукты моря очень слабо загрязнены стронцием и цезием. Свободны от загрязнения радионуклидами глобальных выпадений артезианские и многие грунтовые воды благодаря изоляции от поверхности земли. А вот воды подземных водоемов, талые, дождевые воды могут служить источником поступления некоторых радионуклидов в организм человека.

     Исследования  показали, что с вдыхаемым атмосферным  воздухом человек может получать 1 - 2% радионуклидов от их общего количества, поступающих с пищей и водой.

     Хлебопродукты являются ведущим поставщиком радионуклидов в организм - от одной трети до половины их общего поступления. На втором месте по значимости стоит молоко, на третьем - картофель, овощи и фрукты, затем мясо и рыба. Например, накопление радионуклидов у рыб разных пород даже в одном и том же водоеме может различаться в 2 - 3 раза. Для хищных рыб (щука, окунь и др.) характерны минимальные показатели и накопления стронция-90 и максимальные цезия-137. Растительноядные рыбы (карп, карась и др.) наоборот накапливают стронция больше, а цезия в несколько раз меньше, чем хищники. Наибольшие уровни накопления радионуклидов характерны для пресноводных рыб северных районов нашей страны, где воды поверхностных водоемов, особенно озер, слабоминерализованы.

     На  накопление радионуклидов в тканях рыб влияет тепловое загрязнение водоемов. Размещение рыбохозяйственных комплексов у мест удаления тепловых вод теплоэлектростанций и особенно АЭС способствует также более интенсивному усвоению и накоплению в тканях рыб находящихся в воде радионуклидов. Согласно данным, полученным в условиях лабораторных экспериментов, установлено, что уровни накопления цезия-137 в тканях карпа, обитавшего в воде с температурой 250С , вдвое выше, чем при обитании этой рыбы в воде с температурой 12 - 150С.

3.Биологическое  действие радиации  на человеческий        организм

 
 

     Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В  малых дозах радиационное излучение  может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

     Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется  тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное -излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

     Также различается чувствительность отдельных  органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения: 

     0,03 - костная ткань 

     0,03 - щитовидная железа 

     0,12 - красный костный мозг 

     0,12 - легкие  

     0,15 - молочная железа 

     0,25 - яичники или семенники 

     0,30 - другие ткани 

     1,00 - организм в целом. 

     Вероятность повреждения тканей зависит от суммарной  дозы и от величины дозировки, так  как благодаря репарационным  способностям большинство органов  имеют возможность восстановиться после серии мелких доз. 

     Значения  допустимых доз радиации: 
 

     Орган 

     Допустимая  доза  

     Красный костный мозг 

     0,5-1 Гр.  

     Хрусталик глаза 

     0,1-3 Гр.   

     Почки 

     23 Гр.  

     Печень 

     40 Гр.  

     Мочевой пузырь 

     55 Гр.  

     Зрелая  хрящевая ткань 

     >70 Гр.  

     Примечание: Допустимая доза - суммарная доза, получаемая человеком в течение 5 недель  

     Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну-две недели, а доза в 3-5 грамм грозит обернуться летальным исходом примерно половине облученных.  

     Знания  конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

     Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак  и генетические нарушения.

     В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

     Среди наиболее распространенных раковых  заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности  летального исхода при лейкозе более  надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

     Воздействие радиологического излучения резко  усиливается другими неблагоприятными экологическими факторами (явление  синергизма). Так, смертность от радиации у курильщиков заметно выше.

     Что касается генетических последствий  радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

     Изучение  генетических последствий облучения  еще более затруднено, чем в  случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться  они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

     Приходится  оценивать появление наследственных дефектов у человека по результатам  экспериментов на животных.

     При оценке риска НКДАР использует два  подхода: при одном определяют непосредственный эффект данной дозы, при другом - дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

     Так, при первом подходе установлено, что доза в 1 г, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

     При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 г на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

     Оценки  эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 г на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни - также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

Информация о работе Обеспечение радиационной безопасности пищевых продуктов