Автор: Пользователь скрыл имя, 14 Марта 2012 в 10:47, реферат
Эффективность применения CALS-технологий предполагает неукоснительное соблюдение всеми участниками жестко регламентированных стандартов, процедур, правил, технических решений.
Стандарты и методические материалы в области CALS-технологий в основном определяют общий подход, способ представления и интерфейсы доступа к данным различного типа, вопросы защиты информации и ее электронной авторизации (цифровой подписи).
1.Направления стандартизации в мире и в России
2.Национальная система стандартизации и сертификации РБ
3. Базовые стандарты системы качества, используемые при сертификации предприятий – разработчиков программных средств
4.Сертифицирование программных средств и системы качества
5.Основы обеспечения качества сложных программных средств
6.Номенклатура показателей качества программной продукции
7.Стандартизация информационных технологий
8.Стандартизация локальных вычислительных сетей
9.Стандарты и протоколы Internet.
NetBIOS (Network Basic Input/Output System) — именование узлов, негарантированная доставка коротких сообщений без установления соединений, установление виртуальных соединений и гарантированная доставка сообщений, общее управление. Протокол распространяется еще и на 6-й и 7-й уровни, различные реализации могут не быть совместимыми с оригинальной разработкой IBM.
NetBEUI (Network Basic Extended User Interface) — реализация и расширение NetBIOS фирмой Microsoft.
4. Транспортный уровень (transport layer) отвечает за передачу данных от источника к получателю с уровнем качества (пропускная способность, задержка прохождения, уровень достоверности), затребованным сеансовым уровнем. Если блоки данных, передаваемые с сеансового уровня, больше допустимого размера пакета для данной сети, они разбиваются на несколько нумерованных пакетов. На этом уровне определяются пути передачи, которые для соседних пакетов могут быть и разными. На приемной стороне пакеты собираются и в должной последовательности передаются на сеансовый уровень (в большой маршрутизируемой сети пакеты могут достигать приемника не в том порядке, в каком передавались , могут дублироваться и теряться).
Транспортный уровень является пограничным и связующим между верхними уровнями, сильно зависящими от приложений, и нижними (subnet layers — уровни, стоящие ниже транспортного), привязанными к конкретной сети. Относительно этой границы и определяются IS — промежуточные системы, обеспечивающие передачу пакетов между источником и получателем, используя нижние уровни, и ES — конечные системы, работающие на верхних уровнях.
Нижние уровни могут обеспечивать или не обеспечивать надежную передачу, при которой получателю вручается безошибочный пакет или отправитель получает уведомление о невозможности передачи.
Сервис нижних уровней может быть ориентирован на установление соединения (connection oriented). При этом в начале связи устанавливается соединение между источником и приемником, и передача может идти без нумерации пакетов, поскольку каждый из них идет за предшественником по тому же пути. По окончании передачи соединение разрывается. Связь без установления соединения (connectionless) требует нумерации пакетов, поскольку они могут теряться, повторяться, приходить не по порядку.
Протоколы транспортного уровня зависят от сервиса нижних уровней:
TPO...TP4 (Transport Protocol Class 0...4) — классы протоколов модели OSI, ориентированные на различные виды сервиса нижних уровней.
TCP (Transmission Control Protocol) — протокол передачи данных с установлением соединения.
SPX (Sequenced Packet Exchange) — протокол передачи данных Novell NetWare с установлением соединения.
3. Сетевой уровень (network layer) форматирует данные транспортного уровня и снабжает их информацией, необходимой для маршрутизации (нахождения пути к получателю). Уровень отвечает за адресацию (трансляцию физических и сетевых адресов, обеспечение межсетевого взаимодействия); поиск пути от источника к получателю или между двумя промежуточными устройствами; установление и обслуживание логической связи между узлами для установления связи как ориентированной, так и не ориентированной на соединение. Форматирование данных осуществляется в соответствии с коммуникационной технологией (локальные сети, глобальные сети). Примеры протоколов сетевого уровня:
ARP (Address Resolution Protocol) — взаимное преобразование аппаратных и сетевых адресов.
IP (Internet Protocol) — протокол доставки дейтаграмм, основа стека TCP/IP.
IPX (Internetwork Packet Exchange) — базовый протокол NetWare, отвечающий за адресацию и маршрутизацию пакетов, обеспечивающий сервис для SPX.
2. Канальный уровень (data link layer), называемый также уровнем звена данных. Обеспечивает формирование фреймов (frames) — кадров, передаваемых через физический уровень, контроль ошибок и управление потоком данных (data flow control). Канальный уровень призван скрыть от вышестоящих подробности технической реализации сети (для локальных сетей, например, сетевой уровень не «увидит» различий между Ethernet, Token Ring, ARCnet, FDDI).
IEEE в своей сетевой модели 802 ввел дополнительное деление канального уровня на 2 подуровня (sublayers):
Подуровень LLC (Logical-Link Control — управление логической связью) является стандартным (IEEE 802.2) интерфейсом с сетевым уровнем, независимым от сетевой технологии.
Подуровень MAC (Media Access Control — управление доступом к среде) осуществляет доступ к уровню физического кодирования и передачи сигналов. Применительно к технологии Ethernet МАС-уровень передатчика укладывает данные, пришедшие с LLC, в кадры, пригодные для передачи. Далее, дожидаясь освобождения канала (среды передачи), он передает кадр на физический уровень и следит за результатом работы физического уровня. Если кадр передан успешно (коллизий нет), он сообщает об этом LLC-подуровню. Если обнаружена коллизия, он делает несколько повторных попыток передачи и, если передача так и не удалась, сообщает об этом LLC-подуровню. На приемной стороне МАС-уровень принимает кадр, проверяет его на отсутствие ошибок (если бы все сетевые адаптеры это делали честно!) и, освободив его от служебной информации своего уровня, передает на LLC.
1. Физический уровень (physical layer) — нижний уровень, обеспечивающий физическое кодирование бит кадра в электрические (оптические) сигналы и передачу их по линиям связи. Определяет тип кабелей и разъемов, назначение контактов и формат физических сигналов.
Примеры спецификаций физического уровня:
EIA/TIA-232-D - ревизия и расширение RS-232C (V.24+V.28), 25-штырь-ковый разъем и протокол последовательной синхронной/асинхронной связи.
IEEE 802.5, определяющий физическое подключение для Tokeng Ring.
IEEE 802.3, определяющий разновидности Ethernet (10 Мбит/с). Здесь физический уровень делится еще на 4 подуровня:
PLS (Physical Layer Signaling) — сигналы для трансиверного кабеля;
AUI (Attachment Unit Interface) — спецификации трансиверного кабеля (интерфейс AUI);
РМА (Physical Medium Attachment) — функции трансивера;
MDI (Medium Dependent Interface) — спецификации подключения трансивера к конкретному типу кабеля (lOBaseS, 10Base2).
Сетевая технология (применительно к локальным сетям это все разновидности Ethernet, Token Ring, ARCnet, FDDI) охватывает канальный и физический уровень модели. Промежуточные системы (устройства) описываются протоколами нескольких уровней, начиная от 1-го и доходя до 3-го, а иногда и 4-го уровней.
9.Стандарты и протоколы Internet.
Семейство протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сеть Internet, реализации обмена данными межу машинами. Основное внимание уделено примерам, основанным на реализации TCP/IP в ОС UNIX. Однако основные положения применимы ко всем реализациям TCP/IP.
Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TEL-NET, FTP и многие другие. TCP/IP - это технология межсетевого взаимодействия, технология internet. Сеть, которая использует технологию internet, называется "internet". Если речь идет о глобальной сети, объединяющей множество сетей с технологией internet, то ее называют Internet.
Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.
Когда необходимо передать пакет между машинами, подключенными к разным подсетям, то машина-отправитель посылает пакет в соответствующий шлюз (шлюз подключен к подсети также как обычный узел). Оттуда пакет направляется по определенному маршруту через систему шлюзов и подсетей, пока не достигнет шлюза, подключенного к той же подсети, что и машина-получатель; там пакет направляется к получателю. Объединенная сеть обеспечивает датаграммный сервис.
Проблема доставки пакетов в такой системе решается путем реализации во всех узлах и шлюзах межсетевого протокола IP. Межсетевой уровень является по существу базовым элементом во всей архитектуре протоколов, обеспечивая возможность стандартизации протоколов верхних уровней.
Логическая структура сетевого программного обеспечения, реализующего протоколы семейства TCP/IP в каждом узле сети internet, изображена на рис.1. Прямоугольники обозначают обработку данных, а линии, соединяющие прямоугольники, - пути передачи данных. Горизонтальная линия внизу рисунка обозначает кабель сети Ethernet, которая используется в качестве примера физической среды; "o" - это трансивер. Знак "*" – обозначает IP-адрес, а "@" - адрес узла в сети Ethernet (Ethernet-адрес). Понимание этой логической структуры является основой для понимания всей технологии internet. В дальнейшем мы будем часто ссылаться на эту схему.
Рисунок 1
Введем ряд базовых терминов, которые мы будем использовать в дальнейшем.
Драйвер - это программа, непосредственно взаимодействующая с сетевым адаптером.
Модуль - это программа, взаимодействующая с драйвером, сетевыми прикладными программами или другими модулями.
Драйвер сетевого адаптера и, возможно, другие модули, специфичные для физической сети передачи данных, предоставляют сетевой интерфейс для протокольных модулей семейства TCP/IP.
Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром; если блок данных находится между сетевым интерфейсом и модулем IP, то он называется IP-пакетом; если он между модулем IP и модулем UDP, то - UDP-датаграммой; если между модулем IP и модулем TCP, то - TCP-сегментом (или транспортным сообщением); наконец, если блок данных находится на уровне сетевых прикладных процессов, то он называется прикладным сообщением.
Рассмотрим потоки данных, проходящие через стек протоколов, изображенный на рис.1. В случае использования протокола TCP (Transmission Control Protocol - протокол управления передачей), данные передаются между прикладным процессом и модулем TCP. Типичным прикладным процессом, использующим протокол TCP, является модуль FTP (File Transfer Protocol - протокол передачи файлов). Стек протоколов в этом случае будет FTP/TCP/IP/ENET. При использовании протокола UDP (User Datagram Protocol - протокол пользовательских датаграмм), данные передаются между прикладным процессом и модулем UDP. Например, SNMP (Simple Network Management Protocol - простой протокол управления сетью) пользуется транспортными услугами UDP. Его стек протоколов выглядит так: SNMP/UDP/IP/ENET.
Модули TCP, UDP и драйвер Ethernet являются мультиплексорами . Действуя как мультиплексоры, они переключают несколько входов на один выход. Они также являются демультиплексорами . Как демультиплексоры, они переключают один вход на один из многих выходов в соответствии с полем типа в заголовке протокольного блока данных (рис.2).
Когда Ethernet-кадр попадает в драйвер сетевого интерфейса Ethernet, он может быть направлен либо в модуль ARP (Address Resolution Protocol - адресный протокол), либо в модуль IP (Internet Protocol - межсетевой протокол). На то, куда должен быть направлен Ethernet-кадр, указывает значение поля типа в заголовке кадра.
Если IP-пакет попадает в модуль IP, то содержащиеся в нем данные могут быть переданы либо модулю TCP, либо UDP, что определяется полем "протокол" в заголовке IP-пакета.
Если UDP-датаграмма попадает в модуль UDP, то на основании значения поля "порт" в заголовке датаграммы определяется прикладная программа, которой должно быть передано прикладное сообщение. Если TCP-сообщение попадает в модуль TCP, то выбор прикладной программы, которой должно быть передано сообщение, осуществляется на основе значения поля "порт" в заголовке TCP-сообщения.
Мультиплексирование данных в обратную сторону осуществляется довольно просто, так как из каждого модуля существует только один путь вниз. Каждый протокольный модуль добавляет к пакету свой заголовок, на основании которого машина, принявшая пакет, выполняет демультиплексирование.
Рисунок 2
Данные от прикладного процесса проходят через модули TCP или UDP, после чего попадают в модуль IP и оттуда - на уровень сетевого интерфейса.
Хотя технология internet поддерживает много различных сред передачи данных, здесь мы будем предполагать использование Ethernet, так как именно эта среда чаще всего служит физической основой для IP-сети. Машина на рис.1 имеет одну точку соединения с Ethernet. Шестибайтный Ethernet-адрес является уникальным для каждого сетевого адаптера и распознается драйвером.
Машина имеет также четырехбайтный IP-адрес. Этот адрес обозначает точку доступа к сети на интерфейсе модуля IP с драйвером. IP-адрес должен быть уникальным в пределах всей сети Internet.
Работающая машина всегда знает свой IP-адрес и Ethernet-адрес.
Машина может быть подключена одновременно к нескольким средам передачи данных.
Для машин с несколькими сетевыми интерфейсами модуль IP выполняет функции мультиплексора и демультиплексора . Схема аналогична рис.2.
Таким образом, он осуществляет мультиплексирование входных и выходных данных в обоих направлениях. Модуль IP в данном случае сложнее, чем в первом примере, так как может передавать данные между сетями. Данные могут поступать через любой сетевой интерфейс и быть ретранслированы через любой другой сетевой интерфейс. Процесс передачи пакета в другую сеть называется ретрансляцией IP-пакета. Машина, выполняющая ретрансляцию, называется шлюзом.
Как показано на рис.3, ретранслируемый пакет не передается модулям TCP или UDP. Некоторые шлюзы вообще могут не иметь модулей TCP и UDP.
Ethernet
Кадр Ethernet содержит адрес назначения, адрес источника, поле типа и данные. Размер адреса в Ethernet - 6 байт. Каждый сетевой адаптер имеет свой Ethernet-адрес. Адаптер контролирует обмен информацией, про исходящий в сети, и принимает адресованные ему Ethernet-кадры, а также Ethernet-кадры с адресом "FF:FF:FF:FF:FF:FF" (в 16-ричной системе), который обозначает "всем", и используется при широковещательной передаче.
Рисунок 3
В документации по TCP/IP термины шлюз (gateway) и IP-маршрутизатор (IP-router) часто используются как синонимы. Мы сочли возможным использовать более распространенный термин "шлюз".