Автор: Пользователь скрыл имя, 25 Апреля 2012 в 11:25, курсовая работа
Оптимизация как раздел математики существует достаточно давно и обозначает выбор, который нам необходимо осуществлять в повседневной жизни ежедневно в той или мной сфере деятельности.
Под термином «оптимизация» в научной литературе понимают процесс или последовательность операций, позволяющих получить уточнённое решение. Хотя конечной целью оптимизации является отыскание наилучшего или «оптимального» решения, обычно приходится довольствоваться улучшением уже известных решений, а не доведением их до идеала.
Введение…………………………………………………………....…... 3
Глава 1. Теоретическое обоснование
1.1. Оптимизационные методы решения задач…..……....4-11
1.2. Многокритериальная оптимизация……………..….12-14
Глава 2. Анализ оптимизационных методов на примере решения транспортной и производственной задач................................ ..15-23
Заключение…………………………………………………………. 24-25
Библиографический список……………………………………………26
F = 30х1 + 40х2 .
При решении Х1 значение функции равно F(Х1). Легко понять, что функцию F можно увеличить за счёт увеличения любой из не основных переменных, входящих в выражение F с положительным коэффициентом. Это можно осуществить, перейдя к новому базисному решению, в котором эта переменная будет не основной, то есть принимать не нулевое, а положительное значение. При таком переходе одна из основных переменных перейдёт во второстепенные (неосновные). В данном примере для увеличения F можно переводить в основные любую переменную, так как и х1 и х2 входят в выражение для F со знаком «+». Для определённости будем выбирать переменную, имеющую больший коэффициент, то есть х2. Система (10) накладывает ограничения на рост переменной х2 . Поскольку необходимо сохранять допустимость решений, то есть все переменные должны оставаться неотрицательными, то должны выполняться следующие неравенства (при этом х1 = 0 как не основная переменная):
х3 = 75 - х2 ≥ 0; х2 ≤ 75;
х4 = 30 - х2 ≥ 0; откуда х2 ≤ 30;
х5 = 84 - 4х2 ≥ 0; х2 ≤ 84.
Каждое уравнение системы, определяет оценочное отношение – границу роста переменной х2, сохраняющую неотрицательность соответствующей переменной. Эта граница определяется абсолютной величиной свободного члена к коэффициенту при х2 при условии, что эти числа имеют разные знаки.
Очевидно, что сохранение неотрицательности всех переменных возможно, если не нарушается ни одна из полученных границ. В данном примере наибольшее возможное значение для переменной х2 определяется как х2 = min {75, 30, 84/4} = 84/4 = 21. При х2 = 21 переменная х = 0 и переходит в не основные [2].
Уравнение, где достигается наибольшее возможное значение переменной, переводимой в основные (то есть, где оценка минимальна), называется разрешающим. В данном случае – это третье уравнение.
II шаг.
Основные переменные: х2, х3, х4.
Не основные переменные: х1, х. .
Выразим основные переменные через новые не основные, начиная с разрешающего уравнения (его используем для записи выражения для х2 ):
х2 = (84 - х1 - х5)/4;
х3 = 75 - 3х 1 - 84/4 + х1/4 + х5/4;
х4 = 30 - х1 - 84/4 + х1 /4 + х5/4;
или
х2 =21 0,25 х1 - 0,25х5;
х =54 - 2,75х1 + 0,25х5;
х =9 - 0,75х1 + 0,25х5.
Второе базисное решение Х2 = (0, 21, 54, 9, 0) является допустимым.
Выразив линейную функцию через не основные переменные на этом шаге, получаем: F = 30х1 + 40 (84 - х1 - х5)/4 = 840 + 20х1 - 10х5
Значение линейной функции F2 = F(X2) = 840. Поскольку необходимо сохранять допустимость решений, то должны выполняться следующие неравенства (при этом х1 = 0 как не основная переменная):
х2 =21 - 0,25х5 ≥ 0; х5 ≤ 84;
х3 =54 + 0,25х5 ≥ 0; откуда х5 ≤ -216; (11)
х4 =9 + 0,25х5 ≥ 0. х5 ≤ -36 .
Обнаруживаем
возможность дальнейшего
Х5 = min {84, -216,-36} = -36 .
При х5 = -36 х4 = 0 переходит в неосновные переменные.
Разрешающим будет третье уравнение.
III шаг.
Основные переменные: х1, х2, х3.
Неосновные переменные: х4, х5.
Выразим основные переменные через неосновные:
х1= 12 – 4/3х4 + 1/3х5;
х2 = 18 + 1/3х4 - 1/3х5;
х3 = 21 + 11/3х4 - 11/3х5.
Третье базисное решение Х3 = (12, 18, 21, 0, 0) является допустимым. Выразим линейную функцию через неосновные переменные:
F = 30(12 – 4/3х4 + 1/3х5) + 40(18 + 1/3х4 - 1/3х5) = 1080 – 80/3х4 - 10/3х5.
Значение линейной функции F3 = F(X3) = 1080.
Это выражение не содержит положительных коэффициентов при не основных переменных, поэтому значение F3 = F(X3) = 1080 максимальное. Функцию F невозможно ещё увеличить, переходя к другому допустимому базисному решению, то есть решение X3 – оптимальное. Вспоминая экономический смысл всех переменных можно сделать выводы.
Прибыль
предприятия принимает
Ответ: максимальная прибыль от реализации продукции равна 1080 ден. ед.
Геометрический
метод решения задач
3х1 + х2 ≤ 75, (I)
х1 + х2 ≤ 30, (II) (12)
х1 +4х2 ≤ 84, (III), х1 ≥ 0, х2 ≥ 0, х2 ≥ х1
по смыслу задачи.
Изобразим многоугольник решений данной задачи.
Рис. 4. Многоугольник решений
Область АВС, изображённая на рис.4, является областью допустимых значений функции F. Принимая во внимание систему (12), можно заметить, что самое оптимальное решение находится в точке А, находящейся на пересечении прямых I и II, то есть координаты точки А определяются решением системы уравнений:
3х1 + х2 ≤ 75, х1 = 12,
х1 + х2 ≤ 30, или х2 = 18., т. е. А(12, 18)
максимальное значение линейной функции равно:
Fmax= 30*12 + 40*18 = 1080.
Итак, Fmax = 1080 при оптимальном решении х1 = 12, х2 = 18, т. е. максимальная прибыль в 1080 ден. ед. может быть достигнута при производстве 12 единиц продукции А и 18 единиц продукции В.
Ответ: Fmax = 1080 ден.ед.
Заключение
Алгоритмы безусловной минимизации (максимизации) функций многих переменных можно сравнивать и исследовать как с теоретической, так и с экспериментальной точек зрения.
Первый подход может быть реализован полностью только для весьма ограниченного класса задач, но при этом возможен широкий спектр результатов от получения бесконечной минимизирующей последовательности в методе циклического покоординатного спуска до сходимости не более чем за n итераций в методе сопряженных направлений.
Мощным инструментом теоретического исследования алгоритмов являются теоремы о сходимости методов. Однако, как правило, формулировки таких теорем абстрактны, при их доказательстве используется аппарат современного функционального анализа. Кроме того, зачастую непросто установить связь полученных математических результатов с практикой вычислений. Дело в том, что условия теорем трудно проверить в конкретных задачах, сам факт сходимости мало что дает, а оценки скорости сходимости неточны и неэффективны. Поэтому на практике часто сравнение алгоритмов проводят с помощью вычислительных экспериментов при решении так называемых специальных тестовых задач. Эти задачи могут быть как с малым, так и с большим числом переменных, иметь различный вид нелинейности.
Среди оптимизационных моделей особо выделяют модели принятия оптимальных решений в конфликтных ситуациях, изучаемые теорией игр.
К конфликтным ситуациям, в которых сталкиваются интересы двух (или более) сторон, преследующих разные цели, можно отнести ряд ситуаций в области экономики, права, военного дела и т.п. В задачах теории игр необходимо выработать рекомендации по разумному поведению участников конфликта, определить их оптимальные стратегии.
Основные этапы работы с оптимизационными задачами:
Как правило,
перечисленные этапы
На практике
в большинстве случаев успех
операции оценивается не по одному,
а сразу по нескольким критериям,
один из которых следует
Библиографический список:
Информация о работе Оптимизационные задачи в экономике и математический аппарат их решения