Геометрия Лобачевского

Автор: Пользователь скрыл имя, 15 Апреля 2013 в 21:25, курсовая работа

Описание работы

Данная работа показывает сходство и различия двух геометрий на примере доказательства одного из постулатов Евклида и продолжение этих понятий в геометрии Лобачевского с учетом достижений науки на тот момент.
Любая теория современной науки считается верной, пока не создана следующая. Это своеобразная аксиома развития науки. Этот факт многократно подтверждался.
Физика Ньютона переросла в релятивисткую, а та - в квантовую. Теория флогистона стала химией. Такова судьба всех наук. Участь эта не обошла геометрию. Традиционная геометрия Евклида переросла в геометрии. Лобачевского. Именно этому разделу науки посвящена эта работа.

Содержание

Введение
Глава I. История возникновения неевклидовой геометрии
V постулат Евклида, попытки его доказательства
Постулаты параллельности Евклида и Лобачевского
Глава II. Геометрия Лобачевского
2.1 Основные понятия
2.2 Непротиворечивость геометрии Лобачевского
2.3 Модели геометрии Лобачевского
2.4 Дефект треугольника и многоугольника
2.5 Абсолютная единица длины в геометрии Лобачевского
2.6 Определение параллельной прямой. Функция П(х)
2.7 Модель Пуанкаре
Практическая часть
1. Сумма углов треугольника
2. Вопрос о существовании подобных фигур
3. Основное свойство параллелизма
4. Свойства функции П(х)
Заключение. Выводы
Приложения
Список использованной литературы

Работа содержит 1 файл

лобачевский.doc

— 1.25 Мб (Скачать)

Лобачевский сразу же поставил вопрос об экспериментальной проверке того, какая геометрия имеет место в реальном мире – «употребительная» или «воображаемая», для чего он решил измерить сумму углов треугольника, образованного двумя диаметрально противоположными положениями Земли на ее орбите и Сириусом и считая один из углов этого треугольника прямым, а другой – равным углу параллельности, Лобачевский нашел, что эта сумма отличается от на разность, меньшую ошибки угломерных инструментов в его время. «После того, - пишет Лобачевский, - можно вообразить, сколько эта разность, на которой основана наша теория параллельных, оправдывает точность всех вычислений обыкновенной геометрии и дозволяет принятые начала рассматривать как бы строго доказанными».

Это объясняет, что под «строгим доказательством теоремы параллельных»  в докладе 1826г. Лобачевский понимал невозможность установить экспериментальным путем, какая из двух геометрий имеет место в реальном мире, откуда вытекает, что на практике можно пользоваться «употребительной геометрией», не рискуя впасть в ошибку.

Наиболее полно изложена система Лобачевского в его «Новых началах с полной теорией параллельных» (1835-1838). Изложение геометрии у Лобачевского основывается на чисто топологических свойствах прикосновения и сечения, конгруэнтность тел и равенство отрезков определяются по существу с помощью движения.

В позднейших работах Лобачевский ввел координаты и вычислил из геометрических соображений целый ряд новых определенных интегралов, которым он специально посвятил работу «Применение воображаемой геометрии к некоторым интегралам», многие из которых были включены в дальнейшие справочники.

 

2.2 Непротиворечивость геометрии Лобачевского

 

Выведя уже в своей первой работе «О началах геометрии» формулы  тригонометрии своей новой системы, Лобачевский заметил, что «эти уравнения  переменяются в … (уравнения) сферической Тригонометрии, как скоро вместо боков а, b, c ставим в а -1, b -1, с -1, но в обыкновенной Геометрии и сферической Тригонометрии везде входят одни содержания ( то есть отношения ) линий: следовательно, обыкновенная Геометрия, Тригонометрия и эта новая геометрия всегда будут согласованы между собой». Это означает, что если мы запишем теорему косинусов, теорему синусов и двойственную теорему косинусов сферической тригонометрии для сферы радиуса r в виде

 

sinA sinB sinC,

sin(a/r) sin(b/r) sin(c/r)

cos(a/r)=cos(b/r)*cos(c/r)+sin(b/r)*sin(c/r)*cosA,

cosA=-cosBcosC+sinBsinCcos(a/r),

 

 

то формулы тригонометрии Лобачевского можно записать в том же виде, заменив стороны а,b,c треугольника произведениями ai, bi, ci; так как умножение сторон а,b,c на i равносильно умножению на i радиуса сферы, то, полагая r=qi и воспользовавшись известными соотношениями

 

cos(ix) = ch x, sin(ix) = i sh x,

 

мы можем переписать соответственные  формулы тригонометрии Лобачевского в виде

 

ch(a/q)=ch(b/q)*ch(c/q)-sh(b/q)*sh(c/q)*cosA,

sinA sinB sinC,

sh(a/q) sh(b/q) sh(c/q)

cosA = -cosBcosC + sinBsinCcos(a/q).

 

Сам Лобачевский пользовался  не функциями ch x и sh x, а комбинациями введенной им функции П(х) с тригонометрическими функциями; постоянная q в этих формулах – та же, что и в формулах (1) и (2).

Фактически Лобачевский  доказал непротиворечивость своей  системы тем, что ввел как на плоскости, так и в пространстве координаты и таким образом построил арифметическую модель плоскости и пространства Лобачевского. Однако сам Лобачевский видел свидетельство непротиворечивость открытой им геометрии в указанной связи формул его тригонометрии с формулами сферической тригонометрии. Этот вывод Лобачевского неправомерен. В своих мемуарах он доказал, что формулы сферической тригонометрии вытекают из его геометрии, между тем, чтобы утверждать, что из непротиворечивости тригонометрических формул вытекает непротиворечивость геометрии Лобачевского, надо было доказать, что все предложения последней можно вывести из ее тригонометрических формул и «абсолютной геометрии» - предложений, не зависящих от пятого постулата. Лобачевский попытался провести такое доказательство, но в его рассуждения вкралась ошибка.

 

2.3 Модели геометрии Лобачевского

 

Первой, по времени явилась  модель планиметрии Лобачевского на некоторых поверхностях (именно на поверхностях постоянной отрицательной  кривизны). На этих поверхностях в смысле их внутренней геометрии, когда расстоянии между точками определяются по кратчайшим линиям на самой поверхности, выполняется геометрия Лобачевского. Только не на всей плоскости, а на той ее части, которая может быть представлена данной поверхностью. Вместе с тем доказано, что не существует (в трехмерном евклидовом пространстве) никакой поверхности, которая своей внутренней геометрией представляла бы плоскость Лобачевского.

Реализацию геометрии  Лобачевского на поверхностях установил итальянский математик Бельтрами в 1868 г.

Соответствующие поверхности  могут быть изготовлены, и тогда геометрия на кусках плоскости Лобачевского представляется самым реальным способом.

Следующая по времени  появления геометрическая модель дается на обычной евклидовой плоскости. В ней вся плоскость Лобачевского представляется внутренностью круга, прямые представлены хордами (с исключенными концами).

Преобразования –  отображения круга на себя, переводящие  хорды в хорды, принимаются наложения (движения или перемещения), так что равными считаются фигуры внутри круга, которое отображаются одна на другую при таких преобразованиях круга. (Аксиома параллельных не выполняется: через точку А на рис. проходит бесконечно много «прямых» - хорд, не пересекающих «прямую» а.)

Геометрия Лобачевского в пространстве представляется аналогичной моделью. Пространством служит внутренность шара, прямыми – хорды с исключенными концами, наложениями – отображения шара на себя, переводящие хорды в хорды. Плоскости представляются внутренностью кругов, являющихся плоскими сечениями шара.

Эта модель называется моделью  Кэли – Клейна потому, что фактически построил в 1859 г. английский математик  Кэли, хотя и не понял, что введенная им геометрия в круге и есть геометрия Лобачевского. Это установил в 1871 г. немецкий математик Клейн.

Таким образом, можно  сказать, что геометрия Лобачевского оказывается не более как некоторым фрагментом геометрии Евклида, только изложенным особым образом. Если взять обычный круг, внутренность его называть плоскостью, точки - точками, хорды – прямыми и объявить равными фигуры внутри круга, переводимые одна в другую преобразованиями, при которых круг переходит сам в себя и хорды - в хорды, то это и будет геометрия Лобачевского.

Так многовековые поиски доказательства аксиомы параллельных и немыслимость неевклидовой геометрии разрешились, можно сказать: в некотором пересказе некоторых элементов обычной геометрии внутри круга.

Третья геометрическая модель была дана в 1882 г. французским математиком Пуанкаре. В ней геометрия Лобачевского также представляется некоторым фрагментом геометрии Евклида, только изложенным особым образом (существенно отличным от модели Кэли-Клейна).

Но можно строить аналитическую  модель геометрии, представляя точки  координатами и выражая расстояние формулой в координатах.

Такую модель геометрии Лобачевского дал немецкий математик Риман  в качестве частного случая общей  определенной им геометрии, называемой теперь римановой. Риман при вступлении на должность в Геттингенский  университет в 1854 г. прочел лекцию «О гипотезах, лежащих в основании геометрии», в которой в общих чертах определил общее понятие пространства любого числа измерений и указал общий принцип введения метрики – измерения расстояний бесконечно малыми шагами. Он также указал возможное значение его теории для физики, как бы предвидя теорию тяготения Эйнштейна.

Однако лекция осталась непонятой и была опубликована только в 1869 г., после смерти Римана.

Когда геометрия Лобачевского достаточно развита, можно на плоскости ввести координаты и дать формулу, выражающую расстояние между точками через их координаты. После этого стоит только перевернуть вывод, заявив: неевклидова геометрия – это теория, в которой точки задаются координатами и расстояния - соответствующей формулой.

 

2.4 Дефект треугольника и многоугольника

 

Учитывая, что в геометрии Лобачевского сумма углов треугольника меньше 2d, введем понятие о дефекте треугольника, который равен разности между 2d и суммой углов этого треугольника:

 

DABC=2d-SABC.

 

Нетрудно видеть, что если отрезок BD разделяет АВС на треугольники ABD и DBC, то

 

DABC=DABD+DDBC.

 

Для n-угольника дефект вводится как разность между 2d(n-2) и суммой его углов. Можно доказать вообще, что если многоугольник разбит ломаными на несколько многоугольников, то дефект полного многоугольника равен сумме дефектов его частей.

евклид лобачевский  геометрия постулат

 

2.5 Абсолютная единица длины в геометрии Лобачевского

 

Таким образом, в геометрии  Лобачевского подобных фигур не существует, а это связано с многочисленными осложнениями, которые кажутся очень странными для каждого, начинающего знакомиться с неевклидовой геометрией. В самом деле, из отсутствия подобия вытекает, что треугольник вполне определяется своими тремя углами (два треугольника с попарно равными углами равны), что отрезок может быть определен при помощи угла (например, как сторона равностороннего треугольника с заданным углом, меньше 2/3d ).

В геометрии Евклида  для определения отрезка необходимо задать непременно некоторый другой отрезок (или систему отрезков) и  указать то геометрическое построение, при помощи которого первый может быть получен из второго (чаще задается единица длины и число, выражающее длину определяемого отрезка). В геометрии Лобачевского дело обстоит проще: для определения отрезка не надо задавать другого отрезка, достаточно указать только геометрическое построение, при помощи которого может быть получен определяемый отрезок (например, как сторона равностороннего треугольника с углом, получаемым из прямого угла при помощи того или иного построения).

Если реальное пространство подчиняется законам геометрии  Евклида, эталон длины необходимо должен быть реализован при помощи некоторого твердого тела; если же в реальном пространстве имеет место геометрия Лобачевского, то единица длины может быть задана некоторым геометрическим построением – в этом случае само пространство своими геометрическими свойствами определяет ту или иную единицу длины. Это факт выражают, говоря, что в пространстве Лобачевского существуют «абсолютные единицы длины», т.е. не зависящие от задания тех или иных отрезков.

Таким образом, в геометрии  Лобачевского мы имеем более тесную аналогию в вопросах измерения отрезков и углов, чем в евклидовой геометрии (для углов в обеих геометриях существуют абсолютные единицы меры, например прямой угол, получающийся при помощи геометрического построения независимо от задания тех или иных углов).

 

2.6 Определение параллельной прямой. Функция П(х)

 

Как мы видели, из постулата Лобачевского непосредственно вытекает, что через луч Р, не лежащую на данной прямой АА1, в плоскости, можно провести бесчисленное множество прямых, не пересекающих АА1. Применяя аксиому Дедекинда, можно показать что существуют две граничные прямые СС1 и DD1, разделяющие класс пересекающих прямых, лежащих в углах CPD и C1PD1, от класса не пересекающих, проходящих внутри углов CPD1 и DPC1. нетрудно видеть, что эти граничные прямые не пересекают прямую АА1 (если бы существовала точка пересечения S прямых АА1 и СС1, то, взяв на прямую АА1 точку Т правее S, мы получили бы прямую РТ, проходящую внутри углов CPD1 и DPC1 и пересекающую АА1 ). Эти граничные прямые СС1 DD1 Лобачевский называет параллельными прямой АА1 в точке Р.

Таким образом, через каждую точку Р плоскости проходят две прямые, параллельные данной: прямая DD1, параллельная АА1 в направлении А1А, и прямая СС1, параллельная той же прямой в противоположном направлении АА1. Обе эти прямые расположены симметрично относительно перпендикуляра PQ, опущенного на АА1. Угол C1PQ Лобачевский называет углом параллельности. Он является функцией длины перпендикуляра PQ, которую Лобачевский обозначает так:

 

C1PQ=П(PQ).

 

Можно сказать, что постулат Евклида соответствует предположению, что угол параллельности – прямой. Отметим, что достаточно предположить, что функция П(РQ) постоянна, чтобы отсюда вытекал постулат Евклида.

Необходимо дать себе ясный отчет, насколько понятие параллелизма в неевклидовой геометрии сложнее соответствующего понятия обычной геометрии. В самом деле, по самому определению параллелизма недостаточно сказать, что прямая СС1 параллельна АА1: необходимо при этом не только указать направление параллельности, но и ту точку Р, в которой имеет место факт параллелизма (т.е. в которой прямая СС1 является граничной, отделяющей пересекающие прямые от не пересекающих). Поэтому критерий параллельности выражается боле сложно, чем в евклидовой геометрии. Чтобы доказать, что прямая СС1 в точке Р параллельна АА1 в направлении АА1, необходимо: 1) установить факт не пересечения этих прямых, 2) показать, что СС1 в точке Р является граничной прямой; это последнее устанавливается обычно так («критерий угла»): проводим прямую PR, пересекающую АА1, и рассматриваем угол C1PR, который своим отверстием обращен в сторону параллельности; если каждый луч, имеющий вершину в точке Р и проходящий внутри этого угла, пересекает луч RА1, то прямая СС1 параллельна АА1 в точке Р в направлении АА1.

Информация о работе Геометрия Лобачевского